
SMARTS

HTTP Server

-1

Cover PageSMARTS HTTP Server

This document applies to Com-plete Version 6.2.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© March 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of
Software AG. Other products and company names mentioned herein may be the trademarks of their
respective owners.

0

SMARTS HTTP ServerCover Page

Table of Contents

................. 1SMARTS HTTP Server

................ 1SMARTS HTTP Server

.............. 2Introduction to the HTTP Server

.............. 2Introduction to the HTTP Server

................. 2The HTTP Server

...... 3SMARTS Implementation of the Common Gateway Interface (CGI)

............. 3SMARTS CGI Input Processing

............. 3SMARTS CGI Output Processing

............ 5SMARTS CGI Environment Variables

............ 6SMARTS CGI Termination Processing

............... 6SMARTS CGI Extensions

............... 6Standard CGI Operation

................ 7Non-C CGI Programs

............. 7Extensions for Other Languages

............ 7The Conversational CGI Program Concept

............... 8The HTTP Server Solution

........... 8Conversational CGI Application Structure

.............. 10General Installation Information

............... 10General Installation Information

............... 10Supported Operating Systems

................ 10Supported Environments

................. 11Installation Media

................ 11Installation Overview

............... 12Installation on OS/390 or MVS

............... 12Installation on OS/390 or MVS

................ 12The Installation Tape

................. 12Tape Contents

................ 13Creating the PC Files

.............. 13Creating the Mainframe Datasets

............... 15Running the Installation Jobs

.......... 16Installing under the SMARTS Server Environment

............... 17Installing under Com-plete

.................. 18Where Next ?

................ 19Installation on VSE/ESA

................ 19Installation on VSE/ESA

................ 19The Installation Tape

................. 19Tape Contents

.............. 20Running the Installation Jobs

.......... 21Installing under the SMARTS Server Environment

............... 21Installing under Com-plete

.................. 22Where Next ?

................ 23Verifying the Installation

................ 23Verifying the Installation

.............. 23Verify Operation of the Servers

................. 23Sample Programs

................ 23Sample HTML Files

........... 24Verify the SMARTS HTTP Server Installation

i

Table of ContentsSMARTS HTTP Server

............... 24Prepare the Sample Programs

................. 24Start the HTTP Server

................... 24Troubleshooting

.............. 25The HTTP Server Initialization Fails

.... 25The SMARTS Environment Initializes, but the HTTP Server Initialization Fails

........ 25All SMARTS Components Initialize, but Access Attempts Fail

.............. 26Customizing and Using the HTTP Server

.............. 26Customizing and Using the HTTP Server

................ 26Initializing the HTTP Server

.................... 27Termination

.................. 27Operator Commands

................... 28Configuration

............... 28Sample HAANCONF Member

............. 28Assembling the Configuration Member

................. 29HTTP Server Parameters

................... 29CGIPARM

................... 29CONTBUFL

.................... 29CONV

................... 29DEFACEE

................... 30DFLTCONT

................... 30DFLTURL

................... 30HTTPUSER

................... 31HTTPLIST

................... 31HTTPHCD

.................... 31LOGON

................... 31MSGCASE

.................... 32NATLIB

................... 32NATPARM

................... 32NATTHRD

.................... 32PORT

................... 32RECVBUFL

.................... 33SEND

................... 33SENDBUFL

................... 33SERVNAME

................... 34SERVPOOL

.................... 34TRACE

................... 34TRACEDD

................... 35URLPBUFL

.................. 35Content Processing

................ 35Member Type Processing

................ 36Dataset Name Processing

............... 36CGI Request Output Processing

.................. 37Configurable Tables

................... 37HAANEUTT

................... 37HAANIPTT

................... 37HAANIUTT

................... 37HAANOPTT

................... 37HAANTOTT

................. 37Default URL Processing

................... 38Resource Usage

................... 38Global Storage

ii

SMARTS HTTP ServerTable of Contents

................. 38HAANLIST Storage

................. 38HAANRQST Storage

............ 39Additional Storage Used for CGI Requests

................. 39Pooled Server Processing

............... 39Advantages of Pooled Servers

............ 40Considerations when Using Pooled Servers

................. 40Natural Considerations

................. 40Conversational Processing

................. 41Installing NATURAL CGI

................. 41Installing NATURAL CGI

.................. 41Natural 2.2 Support

................... 41Natural Tasks

............ 42Relationship to the HTTP Server Configuration

............... 42Invoking a Natural CGI Program

................. 43Installation Verification

................... 43Additional Notes

............... 44Using the Natural Web Interface

................... 44Required Tasks

............ 44Invoking a Natural Web Interface Program

................. 44Installation Verification

.................. 45Additional Notes

...................... 46Security

..................... 46Security

................... 46The Default User

............... 47HTTP Server Security Integration

............. 47Logon Allowed (LOGON=ALLOWED)

............. 47Logon Required (LOGON=REQUIRED)

........... 47Logon Disallowed (LOGON=DISALLOWED)

............. 48HTTP User ID and Password Encryption

............... 48Natural Security Considerations

................ 48Implementing SAF Security

................. 49Programming CGI Requests

................. 49Programming CGI Requests

........ 49HAANUPR: The HTTP Server User Program Request Module

.............. 49Standard Return and Reason Codes

................ 50The CONVERSE Function

............. 51The DISABLE-CONVERSE Function

............. 51The ENABLE-CONVERSE Function

................ 52The GET-DATA Function

................ 54The LIST-DATA Function

............... 56The PUT-BINARY Function

................ 57The PUT-TEXT Function

............... 58HAANCGIG Interface Module

................ 59HAANCGIL Interface Module

............ 61HAANCGIP and HAANCGIT Interface Modules

.............. 62CGI Extension Interface Module Status

............... 62Interface Module Return Codes

............... 63Interface Module Reason Codes

.............. 65Running CGI Programs under SMARTS

.............. 65Running CGI Programs under SMARTS

............... 65The SMARTS Server Environment

iii

Table of ContentsSMARTS HTTP Server

................. 65Linking the Program

................... 66Requirement

................ 66The Com-plete Environment

.............. 66Linking the Program for Com-plete

............. 66Preparing Com-plete for the Application

............ 66Calculating the Catalog Size under Com-plete

........... 67Catalog Size for CGI Programs under Com-plete

............. 67Program Index Entries under Com-plete

............. 68Running the Program under Com-plete

......... 68Program Options or Functions to Avoid under Com-plete

........... 68Recommendations for the Com-plete Environment

.......... 69Recommendations for Cobol Running under Com-plete

................. 69Natural Considerations

............... 69Running Natural Applications

............ 69Natural and the SMARTS CGI Extensions

................... 70Natural Script

................ 72Additional Notes on Natural

................... 73C Considerations

............. 73Compiling and Linking C Applications

............. 73Supplied C Sample Programs and Jobs

............. 74SMARTS and stdin, stdout, and stderr

.............. 74C and the SMARTS CGI Extensions

................. 74COBOL Considerations

................ 74Sample Programs and Jobs

............ 75COBOL and the SMARTS CGI Extensions

.................. 75PL/1 Considerations

................ 75Sample Programs and Jobs

.............. 76PL/1 and External Module Names

............. 76PL/1 and the SMARTS CGI Extensions

............... 77S/390 Assembler Considerations

............ 77Assembler and the SMARTS CGI Extensions

................. 78Support and Maintenance

................. 78Support and Maintenance

.................. 78Reporting Problems

.................. 79Problem Resolution

............. 79Thread Dump Diagnosis under Com-plete

............... 79HTTP Server Trace Facilities

................. 79Applying Maintenance

................. 81The HTTP Server User Exit

................. 81The HTTP Server User Exit

.................... 81Installation

................... 81General Interface

.................. 82Exit Parameter List

................. 82Entry/Exit Processing

................... 83SMARTS API

.................... 84Exit Points

................... 84Initialization

................... 84Termination

.................. 85URL Processing

.................. 85Output Processing

.................. 87Input Processing

iv

SMARTS HTTP ServerTable of Contents

.................. 88Accept Processing

................... 89Messages and Codes

.................. 89Messages and Codes

............... 90SMARTS HTTP ABEND Codes

................. 90Overview of Messages

............. 91HTTP Server Messages (APSHTP Prefix)

................. 91Overview of Messages

.................... 111Sample Members

................... 111Sample Members

............... 111On the SMARTS Source Dataset

.............. 112On the SMARTS HTTP JOBS Dataset

............... 113On the Natural Library HTPvrs

............. 113On the Natural INPL Update for SYSWEB

v

Table of ContentsSMARTS HTTP Server

SMARTS HTTP Server
This documentation describes the HTTP server component of the Software AG Multiple Architecture
Runtime System (SMARTS) environment. It includes the following documents:

General Information

Introduction to the HTTP
Server

Introduces you to the HTTP Server, including the CGI
programming concept.

Installation and Configuration

General Installation
Information

Describes the required environments for installing the HTTP server, the
prerequisite software, the distribution media, and the general installation
process.

Installation on OS/390
or MVS

Describes the installation procedure on MVS or OS/390 systems.

Installation on
VSE/ESA

Describes the installation procedure on VSE/ESA systems.

Verifying the
Installation

Describes how to verify successful installation and gives
troubleshooting information.

Customizing and Using
the HTTP Server

Describes how to initialize, customize and use the HTTp Server.

Installing NATURAL
CGI

Describes the environment and installation procedures to enable Natural
CGI processing,

Reference and Maintenance

Security

Programming CGI
Requests

Describes the CGI interface modules and how to call them.

Running CGI Programs
under SMARTS

Provides information about running application programs under
SMARTS.

Support and MaintenanceDescribes the procedure for reporting problems and applying ZAPS.

The HTTP Server User
Exit

Describes the user exit interface.

Messages and Codes Explains messages and codes issued by the HTTP server components
of the SMARTS system, including remedial information.

Sample Members Lists the supplied sample jobs and tells you what they are used for.

1

SMARTS HTTP ServerSMARTS HTTP Server

Introduction to the HTTP Server
This chapter tells you how the HTTP server works. It discusses the SMARTS implementation of the CGI
interface for C programs; the SMARTS extensions to CGI for 3GL languages and Natural; and the
SMARTS conversational CGI program concept.

This chapter covers the following topics:

The HTTP Server

SMARTS Implementation of the Common Gateway Interface (CGI)

SMARTS CGI Extensions

The Conversational CGI Program Concept

The HTTP Server
The HTTP server, based on the HTTP version 1.1 standard, is built on the capabilities of the SMARTS
API and the Software AG Com-plete system. It can form the heart of a worldwide web site on the
mainframe operating system and provides the vital link between the mainframe resident data and a
company intranet or internet web site.

The HTTP server has the following highlights:

Any form of data including static HTML pages, GIF files, JAVA classes can be delivered from the
mainframe host to an HTTP user. Users of browsers on PCs or UNIX systems can access data on the
mainframe.

For text-based data, the HTTP server handles all EBCDIC/ASCII issues using configurable
translation tables.

Common Gateway Interface (CGI) support is fully integrated with the SMARTS API so that C CGI
programs that comply with the CGI ‘standard’ can run.

Extensions provided by the HTTP server make it possible for Natural, COBOL and PL/1 programs to
operate as the target of CGI requests.

When SAF security checking is active and the HTTP server is running under Com-plete, the HTTP
server interfaces fully with three different modes of operation from running all users with the same
SAF authorization to a situation where each and every user must provide a user ID and password to
the HTTP server before any requests are serviced.

When running in the Com-plete environment, one or more HTTP servers listening on different ports
can be operational within the same SMARTS.

Each HTTP server may operate with a different security mode.

2

SMARTS HTTP ServerIntroduction to the HTTP Server

SMARTS Implementation of the Common Gateway
Interface (CGI)
Note:
General information about the Common Gateway Interface (CGI) protocol is available on the Internet.
You can use any search engine available on the Internet to find the CGI information.

SMARTS CGI Input Processing

CGI input is processed according to the standard and depends on the HTTP request method used to invoke
the CGI program:

When the ‘GET’ HTTP request method is used, the input parameters are provided in the
QUERY_STRING environment variable and any attempt to access stdin results in an ‘end of file’
condition being raised.

When the ‘POST’ HTTP request method is used, the input parameters are provided as a stdin stream
and may be read using any valid SMARTS function to read stdin input. The amount of input to be
expected may be determined from the CONTENT_LENGTH environment variable.

Input Translation

All data from the web browser is submitted in standard 7-bit ASCII codes. The HTTP server translates to
EBCDIC and sets up headers in standard EBCDIC format as appropriate.

When the input content type, as specified by the CONTENT-TYPE HTTP header, indicates that the
input is type TEXT, the input is translated from ASCII to EBCDIC and is made available to the
application program in EBCDIC format.

When the input content type is TEXT/X-WWW-URLENCODED, any hex values in the data as
specified by %xx where ‘xx’ is the ASCII hex code for the character being submitted to the CGI
request, have the ‘xx’ translated to the appropriate EBCDIC hex representation of that character. The
application may then safely convert this value to a character and be sure that it will be the desired
EBCDIC equivalent of that character.

For example, the equals character ‘=’ has an ASCII representation of X‘3D’ while it has an EBCDIC
representation of X‘7E’. In the TEXT/X-WWW-URLENCODED stream, it appears as ‘%3D’. The
HTTP server processing converts this to ‘%7E’ so that the user program sees the EBCDIC
representation of the character.

SMARTS CGI Output Processing

CGI output is sent to the stdout stream using any standard C functions normally used to send output to
stdout.

Header Processing

The application may provide all, some, or none of the HTTP headers, which provides the greatest
flexibility in responding to requests. Two forms of output headers can be supplied:

3

Introduction to the HTTP ServerSMARTS HTTP Server

nonparsed header (NPH) output; and

parsed header output.

Nonparsed Header Output

Nonparsed header (NPH) output is supported. It is identified by the string ‘HTTP’ sent as the first four
characters of output. The SMARTS CGI processing routines simply pass all data to the browser directly
from the CGI application, so the CGI application can send any header it wishes and any data it likes. The
CGI program is then completely responsible for accuracy.

Note:
If a CGI application sends all HTTP headers itself, conversational processing is not supported for the
HTTP server.

Parsed Header Output

In most cases, a user CGI program provides a single HTTP header: the CONTENT-TYPE. This is sent as
the first string in response to a CGI request and is followed by two CRLF sequences indicating that the
data follows (headers are followed by only one CRLF sequence). Optionally, the application may include
more than the CONTENT-TYPE header before sending the CRLFCRLF sequence followed by data.

If SMARTS does not detect a CONTENT-TYPE header in the first output from the CGI program, it
includes a CONTENT-TYPE header using the default content type for the HTTP server processing the
request. Following the CONTENT-TYPE header, the user may submit zero or more HTTP headers.

Alternatively, the LOCATION header may be sent as the first (and only) header. No CONTENT-TYPE
header is sent and the LOCATION header is handled according to the HTTP protocol.

Providing No HTTP Headers

When a program sends no HTTP headers at all, which happens if an application was written to stdout in a
number of environments, the HTTP server inserts a default CONTENT-TYPE header as specified in the
DFLCONT configuration parameter. Software AG recommends that you set this parameter to
TEXT/PLAIN to accommodate all programs. Other content types may cause confusing results.

Output Translation Processing

All HTTP headers, whether generated by SMARTS or the CGI program, are expected in EBCDIC and are
translated by the HTTP server to ASCII prior to being sent to the CGI requester. This ensures that
application programs have readable headers included instead of setting up ASCII data streams using
EBCDIC tools and editors.

SMARTS also monitors the data stream for the start of the content itself, which is signified by a
CRLFCRLF sequence in the output data stream (headers are followed by only one CRLF sequence). Once
the CRLFCRLF sequence is detected, all other data is treated as output content.

SMARTS translates output content from EBCDIC to ASCII only if the output type sent by the CGI
program, or defaulted by the HTTP server, is of type TEXT/*. This includes TEXT/PLAIN, TEXT/HTML
but also occurs for any other user TEXT/x-application-* type content headers.

4

SMARTS HTTP ServerIntroduction to the HTTP Server

Any other content types are sent through unchanged to the requester of the CGI program. This facilitates
downloading binary data of any sort.

SMARTS CGI Environment Variables

The following table summarizes the environment variables and their contents set up as a result of a CGI
request processed by SMARTS:

Environment
Variable

Contains ...

REQUEST_METHOD
a value indicating the HTTP request method used to generate the request.
Normally this is GET or POST and indicates where the input date, if any,
can be found.

SERVER_PROTOCOL
the version level of the HTTP protocol used to send the request to the server.
Normally this has the form HTTP Vv.r where ‘v’ and ‘r’ indicate the level of
HTTP being used.

SERVER_PORT the HTTP port number being used to service requests by this HTTP server.

CONTENT_LENGTH
the length of the input data available on the stdin stream for processing CGI
requests generated by the POST request method.

CONTENT_TYPE
the type of the input data available on the stdin stream for processing CGI
requests generated by the POST request method.

QUERY_STRING
the parameters provided with a content type of
TEXT/X-WWW-URLENCODED for CGI requests generated by the GET
request method.

PATH_INFO
the piece of the URL used to invoke the CGI program following the CGI
program name.

PATH_TRANSLATED
the physical path used to run the CGI program, which may differ on some
systems from the URL path. The translated path is always the same as the
URL path when running under the HTTP server.

SCRIPT_NAME
the piece of the URL up to the end of the CGI program name.
SCRIPT_NAME and PATH_INFO together compose the URL.

REMOTE_USER the remote user ID provided with the HTTP request.

In addition to the above, all HTTP headers are set up as environment variables by prefixing them with the
string ‘HTTP_’ and translating all ‘-’ or dash characters in the HTTP header name to ‘_’ or underscore
characters as per the CGI standard. For example, the header ‘LOCATION’ may be obtained by requesting
‘HTTP_LOCATION’ if this header was provided on the request.

Note:
All HTTP environment variable names are uppercase EBCDIC values.

5

Introduction to the HTTP ServerSMARTS HTTP Server

SMARTS CGI Termination Processing

When a CGI program terminates normally, it sends all output data to the stdout stream and returns control
to the HTTP server. The HTTP server ensures that all data is sent to the web browser and then closes the
connection.

When the HTTP client browser supports persistent sessions, the data is sent to the browser but instead of
closing the connection, the HTTP server waits for another request over the same connection.

When a CGI program terminates abnormally either by ABENDing or not returning control to the HTTP
server, the web browser may receive some or none of the data sent by the CGI program. In this case, the
HTTP server’s priority is to clean up the session by closing the connection and freeing all resources
associated with that request, thus preventing resource ‘leaks’ that would otherwise impact the integrity of
the HTTP server later in its cycle.

The HTTP server configuration parameter SEND determines the amount of data seen:

If SEND=IMMEDIATE is set, the client browser sees all data written to stdout to the point where the
program ABENDs. Software AG recommends that you set this option in a test environment.

If SEND=BUFFERED is set, the client browser only sees data if the buffer was filled at least once
prior to the ABEND. All data in the buffer at the time of the ABEND is lost. Software AG
recommends that you set this option in a production environment for greater performance.

SMARTS CGI Extensions
Now that you understand how a CGI request is generated and processed by a CGI program, this section
describes in general terms how languages use the SMARTS CGI extensions. The language-specific
chapters provide additional detail.

Standard CGI Operation

CGI is essentially a remote procedure call (RPC) type request driven by an HTML page that results in a
request being sent to the HTTP server to run a specific program. The request includes data from the
browser filled in by the user of the HTML page that generated the request.

The HTTP server

recognizes the CGI request;

makes information from the submitted HTML page and information about the actual request
available in the execution environment of the CGI application; and

gives control to the program identified by the request.

Information is made available

by using the C stdin stream for certain types of input; and

by setting up well known environment variables that may be accessed using the getenv function.

6

SMARTS HTTP ServerIntroduction to the HTTP Server

By writing to the stdout stream, output is submitted back to the requester with the response.

Non-C CGI Programs

The CGI standard was designed specifically for the C language; however, many installations need to
leverage their current skills by providing CGI support in other languages.

Since most languages cannot take advantage of the ‘stream’ approach for accessing data used by the CGI
interface, SMARTS provides extensions to the standard to enable languages other than C to access ‘input’
from a web CGI request and produce output in response to that input. The SMARTS extensions make it
possible to write CGI routines in languages that are as powerful and productive as their C counterparts.

Extensions for Other Languages

Languages such as Natural and COBOL are not suited to interpreting streams of data or parameters
provided in strings. Implementation in PL/1 is clumsy while Assembler processing of this data is
long-winded and time-consuming from a coding point of view.

Rather than adapt other languages to the C way of doing things, SMARTS provides CGI extensions for
accessing data submitted in a CGI request and building the response to that request. The CGI extensions
are implemented using a simple call mechanism that allows applications to be written in a more structured
mode than normal CGI programs; a mode that suits languages like Natural, COBOL, and PL/1.

Every piece of data submitted as part of a CGI request has a field name associated with it. Where data can
be entered in a field, the user enters the field name and the data. As CGI programs are designed to respond
to the input from a given HTML page, or at a minimum, HTML pages with certain fields defined, there is
no need for search strings.

The SMARTS primary user program request interface is called HAANUPR. This interface will be
maintained and upgraded in the future.

For compatibility, previous interface modules continue to be supported so that existing applications can
run unchanged, but they will not be enhanced.

These interface modules are documented in detail in the chapter Programming CGI Requests in this
manual.

The Conversational CGI Program Concept
Since the foundation of the worldwide web, all CGI programming has been non-conversational or
"stateless". This means that when a request is issued, the CGI program processes the request, returns the
response to the client, and forgets all about that client.

Some CGI applications store information away about the user’s state and retrieve it when the user appears
again; however, the state information must then be aged as the user may never come back. It also
complicates the program in terms of transactional processing over more than one CGI request,
identification of users, and so on.

7

Introduction to the HTTP ServerSMARTS HTTP Server

The HTTP Server Solution

The HTTP server conversational concept avoids these problems by enabling an application program to
issue a CONVERSE call in the middle of a processing loop. This sends all data previously output by the
CGI program to the client browser.

The HTTP server then suspends the application program until the next HTTP request is issued for that
user.

When it is received, the appropriate session is restarted by the HTTP server after the call to CONVERSE
with all the data from the client browser available to it as well as any data, switches, or database sessions
that the CGI program had in local storage prior to the CONVERSE.

It is possible to set timeouts so that the session context is cancelled if a user doesn’t respond within a
specific period of time (for example, 30 minutes). When the user does respond, it receives a message to
the effect that the conversation doesn’t exist.

This mechanism has the following advantages:

A conversational program can save valuable resources as it is only started once per user and remains
active until the conversation ends. Normally, a CGI program must be started and terminated for every
CGI request.

Programs can be structured properly with standard loop and parameter gathering techniques.

The application program can maintain database or any other connections over the duration of the
conversation, avoiding the need to connect and disconnect for each CGI request.

It gives a CGI application the ability to maintain a transaction over a conversation of two or more
HTML pages, if necessary.

It is a more natural way to program instead of having to collect all the context information which will
be required the next time input appears from a given user.

Conversational CGI Application Structure

Any CGI program may converse if the server where the CGI program will run is configured to allow
conversational programs. This is controlled by the HTTP server CONV configuration parameter, which
must be set to YES to allow conversational programs. Because the CGI program uses the
ENABLE-CONVERSE, CONVERSE, and DISABLE-CONVERSE functions of the HAANUPR
interface, this facility may be used from any programming language including Natural, COBOL, PL/1,
and Assembler.

The following pseudo-code illustrates how such an application is structured. The member HOANCONV
on the HTPvrs.SOURCE dataset is an example of a conversational COBOL CGI program. Comments in
the following are enclosed using "/*" to start the comment and "*/" to terminate the comment.

BEGIN:
/*
 The following call tells the SMARTS HTTP server that you wish to have a
 conversation with the client browser. If conversations are not supported,
 this call will fail
*/
CALL ‘HAANUPR’ status ‘ENABLE-CONVERSE’

8

SMARTS HTTP ServerIntroduction to the HTTP Server

/*
 In the following logic, the program fields would be filled out with the
 initial values to be presented to the client browser.
*/
Set initial values in output HTML page
/*
 The program will always loop indefinitely until the client at the browser
 indicates that it wants to terminate the conversation, or the program itself
 decides to terminate. The client may indicate this by entering a certain
 value in a field or by pressing a specific HTML button. The program may do
 this based on a transaction being completed.
*/
Do while not end of conversation
/*
 The HTML page is built using multiple calls to the HAANUPR interface to
 output the appropriate HTML to the client. This may be preceded by any
 other logic to get data from a database or build data based on time or
 whatever.
*/
CALL ‘HAANUPR’ status ‘PUT-TEXT’ data length
CALL ‘HAANUPR’ status ‘PUT-TEXT’ data length
..
/*
 The only requirement in terms of output is that the CGI program must ensure
 that it gets control back by using the appropriate URL on its SUBMIT
 buttons. The easiest way is to use a relative URL like ‘/cgi/program/’
 where ‘program’ is the name of the CGI program. The CGI program is then
 redispatched then next time the SUBMIT button is pressed. If the wrong URL
 is used in this area, the conversational CGI program is never redispatched.
*/
CALL ‘HAANUPR’ status ‘PUT-TEXT’ data length

/* The following request sends the output built above to the client and suspends the program at this point until the use r presses one of the SUBMIT buttons. */CALL ‘HAANUPR’ status ‘CONVERSE’/* At this point, all input or radio buttons from the input request can be interrogated and appropriate action taken based on the input. No output requests should be issued between here and the bottom of the DO WHILE loop in case the condition to terminate the conversation has been set.*/CALL ‘HA ANUPR’ status ‘GET-DATA’ field length valueCALL ‘HAANUPR’ status ‘GET-DATA’ field length value..CALL ‘HAANUPR’ status ‘GET-DATA ’ field length value/*

The following is the end of the DO WHILE loop:

*/
END
/*

Once you arrive here, the conversation may be terminated:

*/
CALL ‘HAANUPR’ status ‘DISABLE-CONVERSE’
/*
 Write a final ‘goodbye’ message to the user
*/
CALL ‘HAANUPR’ status ‘PUT-TEXT’ data length
END

9

Introduction to the HTTP ServerSMARTS HTTP Server

General Installation Information
This chapter describes the required environments for installing the SMARTS HTTP server, the
prerequisite software, the distribution media, and the general installation process.

This chapter covers the following topics:

Supported Operating Systems

Supported Environments

Installation Media

Installation Overview

Supported Operating Systems
The SMARTS HTTP server runs in any operating system supported by Com-plete 6.1 (or above) or the
SMARTS server environment.

Supported Environments
The SMARTS HTTP server runs in the SMARTS server environment and on Com-plete version 6.1 (or
above). Refer to the SMARTS Installation and Operations Manual for information about installing the
SMARTS server environment.

SMARTS can interface with any of the following TCP/IP stacks:

IBM TCP/IP version 3.1 or above.

IBM TCP/IP version 3.1 with PTF UN93769 and all its pre- and co-requisite PTFs applied.

IBM TCP/IP version 3.2 with PTF UN99683 and all its pre- and co-requisite PTFs applied. If PTF
UQ09354 is applied, PTF UQ11919 must also be applied; otherwise, the system hangs.

Interlink TCP/IP version 3.1 or above.

VSE/ESA version 2.2 or above (3Q 1999) using the Connectivity Systems TCP/IP 4 VSE stack.

MSP/EX from Fujitsu (3Q 1999) using the TISP TCP/IP stack.

VM/ESA (4Q 1999) using the standard IBM stack available on VM.

The SMARTS HTTP server requires either Com-plete 6.1 (or above) or Natural 3.2 (or above) to support
the Natural CGI processing.

The SMARTS Software Developer Kit (SDK) is required to support CGI programs based on C.

10

SMARTS HTTP ServerGeneral Installation Information

Installation Media
For OS/390 or MVS/ESA operating systems, SMARTS can be delivered as a self-extracting executable
file. As such, it can be delivered any way that a binary file can be delivered to a user:

3.5 inch diskettes as part of the shrink-wrapped package

using e-mail, both the software itself and updates to the software or fixes

For other operating systems, SMARTS is distributed on tape or cartridge.

Installation Overview
The installation comprises the following steps:

1 If appropriate, execute the self-extracting file to create the required files on a PC hard disk.

2 If appropriate, load the PC files to mainframe datasets as sequential files.

3
Create the mainframe installation datasets as required from the uploaded files, or from the
installation tape or cartridge.

4 Run the various installation jobs.

5 Customize to achieve a running system. The customization required is minimal.

6 Verify the installation.

Software AG recommends that you follow the installation procedure step by step. Once the system is
running, proper change control ensures that any subsequent changes that cause problems can be backed
out smoothly and quickly.

11

General Installation InformationSMARTS HTTP Server

Installation on OS/390 or MVS
Software AG recommends that you keep unmodified copies of all materials distributed or created as part
of the installation process. This may assist with problem diagnosis later by providing an untouched sample
of any given item.

Note:
Additional installation steps for Natural CGI are documented in the chapter Installing Natural CGI

This document covers the following topics:

The Installation Tape

Creating the Mainframe Datasets

Running the Installation Jobs

Installing under the SMARTS Server Environment

Installing under Com-plete

Where Next ?

The Installation Tape

Tape Contents

Datasets

The following table lists the product datasets, what the dataset contains, and how it is created. While you
are free to rename the datasets, the dataset names used in the table are used consistently throughout the
product documentation to ensure clarity.

Distributed Datasets

Dataset Contains ...

HTPvrs.LOAD all load modules required by SMARTS HTTP server

HTPvrs.SRCE all sample source members and macros

HTPvrs.JOBS all sample JCL required

HTPvrs.INPL an INPL file for Natural modules and example programs

HTPvrs.UPDW an INPL update for Natural Web Interface compatibility

HTPvrs.GIFS GIF files for the Natural Web Interface example demo

12

SMARTS HTTP ServerInstallation on OS/390 or MVS

Datasets Created during the Installation Process

Name Dataset containing ...

HTPvrs.USER.SRCE source members

HTPvrs.USER.LOAD load modules for all SMARTS environments

Creating the PC Files

Step 1: Copy the installation files to disk

Copy all of the installation files to a directory on a hard disk where a minimum of 4MB of disk space
must be available on a temporary basis in addition to the installation files.

The files are called HTPvrs#n.EXE where ‘vrs’ is the version, revision, and system maintenance
level of SMARTS and ‘n’ is a sequential number depending on the number of files provided.

All files must be copied from the installation media.

Step 2: Execute each file

Execute each file provided which will expand to create one or more new files in the same directory.

The files created are listed in the following table along with a description of their contents:

File Name Contents

$ALLOC
Sample JCL to allocate the necessary datasets on the mainframe into which the PC
datasets will be uploaded. This job is referred to later in this document.

$TSORECV
Sample JCL to create the actual SMARTS installation datasets from the uploaded
datasets. This job is referred to later in this document.

LOAD HTPvrs.LOAD in off-loaded format.

SOURCE HTPvrs.SRCE in off-loaded format.

JOBS HTPvrs.JOBS in off-loaded format.

INPL HTPvrs.INPL in off-loaded format

UPDW HTPvrs.UPDW in off-loaded format

GIFS HTPvrs.GIFS in off-loaded format.

Creating the Mainframe Datasets
Step 1: Allocate the Datasets

Allocate a dataset with the following DCB information for each off-loaded file that now exists on the
PC:

13

Installation on OS/390 or MVSSMARTS HTTP Server

RECFM=FB
LRECL=80
BLKSIZE=3120

Software AG recommends that you

name each dataset you allocate based on its HTPvrs.* name with the suffix .SEQ. For example,
the dataset for the PC LOAD file would be HTPvrs.LOAD.SEQ.

allocate the datasets in blocks. You can determine the number of blocks required by dividing the
size of the PC file in bytes by the blocksize 3120 and adding 1. For example, if the PC file is
3,480 bytes, allocate 2 blocks.

You may allocate the datasets using either

TSO; or

the $ALLOC file, which may be uploaded to a source dataset on the mainframe as a text file
(using ASCII/EBCDIC translation) and modified to suit the installation requirements and to
reflect the correct space allocation required for each dataset.

Step 2: Upload the Data

Once you have allocated the sequential datasets on the mainframe, use a binary transfer to upload the
binary files to their equivalent mainframe dataset.

IND$FILE and standard FTP implementations all offer the binary transfer capability.

The following table pairs the PC file with the mainframe dataset to which it should be loaded:

PC File Mainframe Dataset

LOAD HTPvrs.LOAD.SEQ

SRCE HTPvrs.SRCE.SEQ

JOBS HTPvrs.JOBS.SEQ

INPL HTPvrs.INPL.SEQ

UPDW HTPvrs.UPDW.SEQ

GIFS HTPvrs.GIFS.SEQ

Step 3: Create the SMARTS Datasets

Once you have uploaded the data to the mainframe, the actual mainframe installation datasets must
be created. Because the sequential datasets uploaded from the PC are actually the result of a TSO
TRANSMIT command, the datasets must be recreated using a TSO RECEIVE command.

You may either

upload the $TSORECV file on the PC to a source dataset on the mainframe as a text file (using
ASCII/EBCDIC translation) and use it as a sample to issue the appropriate commands in batch;
or

14

SMARTS HTTP ServerInstallation on OS/390 or MVS

RECEIVE the datasets individually using TSO commands.

Software AG recommends that RECEIVE be allowed to allocate the space required by the datasets as
it can determine what is required from internal information in the sequential file itself.

Once the SMARTS datasets have been created, delete the sequential datasets created for the data
uploaded from the PC (that is, the datasets with the .SEQ suffix). These can be created again from the
PC files, if necessary.

Running the Installation Jobs
The following procedure installs the SMARTS HTTP server product.

Step 1: Allocate and Initialize User PDS Datasets

To create and initialize the datasets required for the SMARTS HTTP server, modify the sample job
in member $JCLALLO on the HTPvrs.SRCE dataset to suit your installation’s environment, and run
it to create the appropriate datasets.

This job also copies all modifiable members from the HTPvrs.SRCE dataset to the newly created
HTPvrs.USER.SRCE dataset in order to retain all HTPvrs.SRCE members as delivered.

Note:
To ensure that the $JCLALLO member remains as delivered on the HTPvrs.SRCE dataset for future
reference, Software AG recommends that you modify and submit the job from the editor without
saving it. Once the job has completed successfully, the job may be saved in the HTPvrs.USER.SRCE
dataset.

Step 2: Install the HTTP Server HLL Interface Modules

A number of high-level language interface modules must be linked in order to execute the HTTP
server.

Modify and run the sample JCL member HJENLINK in the HTPvrs.JOBS dataset to link the
modules in the appropriate way to the HTPvrs.USER.LOAD dataset.

Ensure that the job finishes with condition code "0".

Step 3: Install the Natural INPL File

Note:
This step applies only if you are running with Natural.

Install the INPL file delivered with the SMARTS HTTP server creating a Natural library called
HTPvrs.

Refer to the chapter Installing Natural CGI for information about installing Natural CGI support.

15

Installation on OS/390 or MVSSMARTS HTTP Server

Step 4: Install the Natural INPL Update File

Note:
This step applies only if you are running with Natural 3.1 or above and the Natural Web Interface.

Install the INPL update file HTPvrs.UPDW delivered with SMARTS to update the SYSWEB library.

Refer to the chapter Installing Natural CGI for information about installing Natural Web Interface
support.

Step 5: Customize the HTTP Server

The sample configuration member HAANCONF was copied into the HTPvrs.USER.SRCE dataset
during installation. Software AG recommends that you use the member as delivered for the
installation verification routines unless the default port number (8080) is inappropriate.

If the HTTP server is to be used with Natural, it may be necessary to change the NATTHRD and
NATLIB parameters.

If it is necessary to change the port number or any other parameter (the default port is 8080 and is
already set in the supplied default HTTP configuration):

1. Modify the parameters in HAANCONF.

2. Recompile HAANCONF using the sample HJBNACNF JCL in HTPvrs.JOBS.

3. Assemble HAANCONF to the HTPvrs.USER.LOAD library available to the server at startup.

Refer to the HTTP Server Use and Customization chapter later in this manual for details about
this process and the parameters that can be specified.

Step 6: Customize the SMARTS Environment

The SMARTS environment configuration member PXANCONF must include the communication
driver interface (CDI) protocol definition for cgistdio.

Following is a sample of the CDI_DRIVER parameter specification:

CDI_DRIVER=(’cgistdio,HAANPCGI’)

See the SMARTS Installation and Operations Manual for more information about this step.

Installing under the SMARTS Server Environment
Step 1: Modify the SMARTS Server Start-up Procedure or Job

Include the following datasets in the COMPLIB dataset concatenation in the order shown:

// DD DISP=SHR,DSN=HTPvrs.USER.LOAD
// DD DISP=SHR,DSN=HTPvrs.LOAD

16

SMARTS HTTP ServerInstallation on OS/390 or MVS

You may optionally add the following DD statement in the JCL to direct output to a specific job class
or dataset:

HTPTRCE the HTTP server trace output when HTTP server tracing is active

Step 2: Modify the SMARTS Server Start-up Parameters

The member HJENPARM on the HTPvrs.JOBS dataset provides a sample set of the parameters
required by the SMARTS server to

start the HTTP server; and

define the various interface extensions as RESIDENTPAGE.

Add the parameters in HJENPARM into your standard set.

At least one thread with 404 kilobytes defined below the 16 megabyte line and 1 megabyte
above the line is required to run the installation verification programs. The values are not
absolute and may be reduced depending on the server usage and the language environment
configuration.

Installing under Com-plete
Note:
The steps in this section apply only if you are running the SMARTS HTTP server under Com-plete.

The procedure described in this section installs the SMARTS HTTP server under Com-plete.

Step 1: Modify the Com-plete Start-up Procedure or Job

Include the datasets in the COMPLIB dataset concatenation as for the SMARTS server environment.

Step 2: Modify the Com-plete Start-up Parameters

Add the parameters from the sample member HJENPARM to the standard set as for the SMARTS
server environment.

Step 3: Catalog PAENSTRT

Use the ULIB utility of Com-plete to catalog the PAENSTRT program with an initial thread size of
400 kilobytes.

Step 4: Install the LE in Com-plete

To test the C, PL/I, and COBOL programs delivered with SMARTS, you must be able to run
language environment (LE)-enabled programs in the Com-plete system.

Refer to the Com-plete documentation for information.

17

Installation on OS/390 or MVSSMARTS HTTP Server

Step 5: Verify the Installation

See the chapter Verifying the Installation.

Execute the steps for the SMARTS server environment against Com-plete to ensure that SMARTS is
running successfully under Com-plete.

In addition to running the programs using the HTTP server, it should be possible to execute the
programs from the command line of a Com-plete session. The output appears in the stdout file.

Step 6: Restart Com-plete

Near the end of initialization processing. messages are issued to the console indicating that the HTTP
server has been started.

If the server does not start successfully, check for error messages and verify the installation steps
again.

Where Next ?
Continue to the chapter Verifying the Installation for information about verifying the SMARTS HTTP
server installation and troubleshooting.

Then familiarize yourself with the customization and configuration options available in the product.
Following the customization sections are a number of sections detailing specific functionality and how to
implement this functionality in the SMARTS environment.

For specific information about the programming interfaces and how to use them, refer to the chapter
Programming CGI Requests later in this manual.

18

SMARTS HTTP ServerInstallation on OS/390 or MVS

Installation on VSE/ESA
Software AG recommends that you keep unmodified copies of all materials distributed or created as part
of the installation process. This may assist with problem diagnosis later by providing an untouched sample
of any given item.

This document covers the following topics:

The Installation Tape

Installing under the SMARTS Server Environment

Installing under Com-plete

Where Next ?

The Installation Tape

Tape Contents

Datasets

The following table lists the product datasets, what the dataset contains, and how it is created. While you
are free to rename the datasets, the dataset names used in the table are used consistently throughout the
product documentation to ensure clarity.

Note:
Software AG recommends that you use the default values to ensure that the HTTP server will install and
execute without the need for user intervention.

Distributed Datasets

Dataset Contains ...

SAGLIB.HTPvrs all components required by the SMARTS HTTP server

HTPvrs.INPL an INPL file for Natural modules and example programs

HTPvrs.UPDW an INPL update for Natural Web Interface compatibility

HTPvrs.GIFS GIF files for the Natural Web Interface example demo

Libraries and Sublibraries Created during the Installation Process

Name Dataset containing ...

SAGLIB.HTPvrs all components required by the SMARTS HTTP server

19

Installation on VSE/ESASMARTS HTTP Server

Running the Installation Jobs

The following procedure installs the SMARTS HTTP server product.

Step 1: Copy the HTTP Server Components to Disk

Use the LIBR Restore function to copy the HTTP server components from the tape into the library or
sublibrary of your choice.

Software AG recommends that you use the library SAGLIB and the sublibrary HTPvrs.

Step 2: Install the Natural INPL File

Note:
This step applies only if you are running with Natural.

Install the INPL file delivered with the SMARTS HTTP server creating a Natural library called
HTPvrs.

Refer to the chapter Installing Natural CGI for information about installing Natural CGI support.

Step 3: Install the Natural INPL Update File

Note:
This step applies only if you are running with Natural 3.1 or above and the Natural Web Interface.

Install the INPL update file HTPvrs.UPDW delivered with SMARTS to update the SYSWEB library.

Refer to the chapter Installing Natural CGI for information about installing Natural Web Interface
support.

Step 4: Customize the HTTP Server

The sample configuration member HAANCONF.J was copied into the HTPvrs sublibrary during
installation. Software AG recommends that you use this member as delivered for the installation
verification routines unless the default port number (8080) is inappropriate.

If the HTTP server is to be used with Natural, it may be necessary to change the NATTHRD and
NATLIB parameters.

If it is necessary to change the port number or any other parameter (the default port is 8080 and is
already set in the supplied default HTTP configuration):

1. Modify the parameters in HAANCONF.A.

2. Assemble HAANCONF using the sample HJBNACNF.J JECL in the HTPvrs sublibrary.

3. Generate the resulting phase into the HTPvrs sublibrary available to the server at startup.

20

SMARTS HTTP ServerInstallation on VSE/ESA

Refer to the HTTP Server Use and Customization chapter later in this manual for details about
this process and the parameters that can be specified.

Step 5: Customize the SMARTS Environment

The SMARTS environment configuration member PXANCONF must include the communication
driver interface (CDI) protocol definition for cgistdio.

Following is a sample of the CDI_DRIVER parameter specification:

CDI_DRIVER=(’cgistdio,HAANPCGI’)

See the SMARTS Installation and Operations Manual for more information about this step.

Installing under the SMARTS Server Environment
Step 1: Modify the SMARTS Server Start-up Job

Add the HTTP server library and sublibrary to the LIBDEF concatenation.

Step 2: Modify the SMARTS Server Start-up Parameters

The member HJENPARM.P in the HTPvrs sublibrary provides a sample set of parameters required
by the SMARTS server environment to

start the HTTP server parameters; and

define the various extensions as RESIDENTPAGE.

Add the parameters from the sample member HJENPARM.P to SYSPARMS section of your
SMARTS server start-up JECL.

At least one thread with 404 kilobytes defined below the line and 1 megabyte above the line is
required to run the installation verification programs. The values are not absolute and may be
reduced depending on server usage and the language environment configuration.

Installing under Com-plete
Note:
The steps in this section apply only if you are running the SMARTS HTTP server under Com-plete.

The procedure described in this section installs the SMARTS HTTP server under Com-plete.

Step 1: Modify the Com-plete Start-up Job

Add the HTTP server library and sublibrary to the LIBDEF concatenation as for the SMARTS server
environment.

21

Installation on VSE/ESASMARTS HTTP Server

Step 2: Modify the Com-plete Start-up Parameters

Add the parameters from the sample member HJENPARM.P to the SYSPARMS section of your
start-up JECL as for the SMARTS server environment.

Step 3: Catalog PAENSTRT

Use the ULIB utility of Com-plete to catalog the PAENSTRT program with an initial thread size of
400 kilobytes.

Step 4: Install the LE in Com-plete

To test the C, PL/I, and COBOL programs delivered with SMARTS, you must be able to run
language environment (LE)-enabled programs in the Com-plete system.

Refer to the Com-plete documentation for information.

Step 5: Verify the Installation

See the chapter Verifying the Installation.

Execute the steps for the SMARTS server environment against Com-plete to ensure that SMARTS is
running successfully under Com-plete.

In addition to running the programs using the HTTP server, it should be possible to execute the
programs from the command line of a Com-plete session. The output from these programs is written
to SYSLST.

Step 6: Restart Com-plete

Near the end of initialization processing, messages are issued to the console indicating that the HTTP
server has been started.

If the server does not start successfully, check for error messages and verify the installation steps
again.

Where Next ?
Continue with Verifying the Installation to ensure the installation was correct, and for any troubleshooting
information.

Then familiarize yourself with the customization and configuration options available in the product.
Following the customization sections are a number of sections detailing specific functionality and how to
implement this functionality in the SMARTS environment.

For specific information about the programming interfaces and how to use them, refer to Programming
CGI Requests.

22

SMARTS HTTP ServerInstallation on VSE/ESA

Verifying the Installation
Use online commands to verify the SMARTS HTTP server installation.

This chapter covers the following topics:

Verify Operation of the Servers

Verify the SMARTS HTTP Server Installation

Troubleshooting

Verify Operation of the Servers
The sample programs and HTML files described in this section are used to verify the operation of the
HTTP server.

Sample Programs

The following table lists the sample programs used for each verification stage and the output they
produce. All programs are also provided in source format.

Program Sample . . . Output

HCANSAMP
C program that takes a content value as CGI
input and sends it back to the user.

The value sent as the content value.

HOANSAMP
COBOL CGI program that shows the uses of
HAANUPR.

The value sent as the content value.

HOANCONV
COBOL CGI program that makes use of
conversational mode.

The value sent as the content value
and the previous value.

HPANSAMP
PL/I CGI program that shows the uses of
HAANUPR.

The value sent as the content value.

Sample HTML Files

The following table lists the sample HTML documents used during verification processing where:

ip-addr is the IP address of the TCP/IP subsystem where the HTTP server is running

port is the port number specified in your HTTP server configuration

Note:
You must change the URL to reflect your version of the dataset name. For example, if
HTPvrs.TEST.USER.SRCE is your name for the dataset referred to in this document as
HTPvrs.USER.SRCE, the first URL in the following table would be:
http://ip-addr:port/htpvrs/test/user/srce/PXANCONF

23

Verifying the InstallationSMARTS HTTP Server

http://ip-addr:port/ Description

htpvrs/user/srce/PXANCONF
a basic test of the HTML functions; displays the PXANCONF
configuration file in text format on a WWW browser.

htpvrs/srce/hhancget.htm
sample HTML form that drives the sample C CGI program
HCANSAMP for HTTP GET processing.

htpvrs/srce/hhancobt.htm
sample HTML form that drives the sample COBOL CGI program
HOANSAMP for HTTP GET processing.

htpvrs/srce/hhanpl1t.htm
sample HTML form that drives the sample PL/1 CGI program
HPANSAMP for HTTP GET processing.

htpvrs/srce/hhannatt.htm
sample HTML form that drives the sample Natural CGI program
HNANSAMP for HTTP GET processing. Note: Natural CGI
processing capability must be installed before this HTML can be run.

cgi/hoanconv

runs the sample COBOL conversation CGI program
HOANCONV. HOANCONV ‘ages’ the last two pieces of data as it is
entered, illustrating how user context can be maintained over multiple
HTML outputs. Enter ‘stop’ to terminate the conversation.

cgi/<program>
runs <program> which may be any sample program from the previous
section Sample Programs; displays program output on a WWW
browser.

Verify the SMARTS HTTP Server Installation
The HTTP server installation is verified by running the HTTP server and by accepting and processing
HTTP requests from a standard browser.

Prepare the Sample Programs

Compile the C sample HCANSAMP and link it using the SMARTS headers and stubs. See the SMARTS
Installation and Operations Manual for details of example jobs.

Refer to the chapter Installing Natural CGI before attempting to run the Natural CGI test programs.

Start the HTTP Server

Start up the SMARTS server environment and ensure the HTTP server starts correctly.

To verify that the HTTP server is operating correctly, run each of the tests described in Sample HTML
Files.

Troubleshooting

24

SMARTS HTTP ServerVerifying the Installation

The HTTP Server Initialization Fails

If the SMARTS environment initialization fails, the HTTP server initialization will also fail.

If the SMARTS environment initialization fails, its configuration is probably invalid. See the SMARTS
environment installation and verification information in the SMARTS Installation and Operations Manual.

The SMARTS Environment Initializes, but the HTTP Server Initialization
Fails

The HTTP server configuration is probably invalid.

Check for messages during the HTTP server initialization process that may identify the problem.

Check in particular for sockets errors that occur if the specified port is already in use by another
application in your system.

All SMARTS Components Initialize, but Access Attempts Fail

If SMARTS components issue messages about successful completion of tasks, the problem is probably in
the request being issued or the port number being used. Ensure that

the IP address or DNS name used to identify the target host actually identifies the TCP/IP stack with
which SMARTS is communicating. More than one IP address is possible on a mainframe system: if
you use the wrong one, your request will time out or be rejected.

you can connect to the IP addresses by pinging that node. If the ping fails, you have no physical
connection to that host.

the port specified is the one the HTTP server is configured to work with. The default is port 8080.

25

Verifying the InstallationSMARTS HTTP Server

Customizing and Using the HTTP Server
This chapter covers the following topics:

Initializing the HTTP Server

Termination

Operator Commands

Configuration

HTTP Server Parameters

Content Processing

Configurable Tables

Default URL Processing

Resource Usage

Pooled Server Processing

Conversational Processing

Initializing the HTTP Server
The HTTP server is normally initialized by specifying a SERVER statement:

SERVER=(HTTP,HAENSERV,Configuration=<config>)

-where

HTTP
is the name of the SERVER. The name of the server may be any name valid for the
SERVER statement.

HAENSERV
is the name of the HTTP server module. The HTTP server module must always be
specified as HAENSERV.

<config>

is the name of the HTTP server configuration to be used. The configuration statement
may specify any valid load module name. The load module must have been generated
as described in this section; otherwise, the results are unpredictable. The default
configuration name used is HAANCONF.

If inactive for any reason, the HTTP server may also be started using the operator command

SERV,INIT,HTTP,HAENSERV,Configuration=<config>

-where the meaning of the parameters is the same as previously outlined for the SERVER statement.

26

SMARTS HTTP ServerCustomizing and Using the HTTP Server

Notes:

1. 1. It is possible to have more than one HTTP server active within the same SMARTS server address
space at the same time. Each server requires a different server name and a different configuration to
ensure that it does not attempt to use the same port as one of the other servers.

2. 2. The SMARTS environment must be active before any the HTTP server can be activated;
otherwise, the HTTP server initialization fails. This can be achieved by placing any of the HTTP
server SERVER statements after the SERVER statement for the SMARTS environment in the
SMARTS server sysparms input file. When the servers are started using operator commands, the
SMARTS environment must be started first.

3. . The QUIESCE command should normally be issued first to give the server time to stop accepting
new requests and finish processing any old requests.

4. . The first time the command is issued, the listening program attached when the server was initialized
is canceled if it is still active. In this case, the terminate must be requested again as the HTTP server
cannot terminate properly until its associated listening task has terminated.

5. . If the SMARTS environment is terminated, all the HTTP server listening tasks are automatically
canceled.

6. . It is not possible to terminate the SMARTS environment unless all the HTTP servers are first
terminated.

Termination
The HTTP server is terminated automatically when the SMARTS server address space is terminated.
However, it is also possible to cycle the server without bringing the address space down by issuing the
operator commands

SERV,HTTP,QUIESCE
SERV,TERM,HTTP

-where HTTP is the name given to the server at startup.

Notes:

1. . The QUIESCE command should normally be issued first to give the server time to stop accepting
new requests and finish processing any old requests.

2. . The first time the command is issued, the listening program attached when the server was initialized
is canceled if it is still active. In this case, the terminate must be requested again as the HTTP server
cannot terminate properly until its associated listening task has terminated.

3. . If the SMARTS environment is terminated, all the HTTP server listening tasks are automatically
canceled.

4. . It is not possible to terminate the SMARTS environment unless all the HTTP servers are first
terminated.

Operator Commands
In addition to the SMARTS server commands to initialize and terminate the HTTP server, the following
operator commands may be issued to the HTTP server by issuing the SMARTS server operator command

27

Customizing and Using the HTTP ServerSMARTS HTTP Server

SERV,HTTP,<command>

-where

HTTP is the name with which the HTTP server was started.

<command> is one of the commands in the following table:

Command Function

CLEARPOOL
Terminates all active HTTP pooled servers. If no pooled servers are in operation, this
command has no effect.

QUIESCE
Causes the HTTP server to stop accepting new requests while enabling existing
requests to continue normally. Software AG recommends issuing this command to the
HTTP server before attempting to terminate it.

TERM Terminates the HTTP server as gracefully as possible.

FORCE
Forcibly terminates the HTTP server. This command should only be used in
emergencies as it may cause integrity problems.

Configuration
The HTTP server is configured by building a load module with the HMANCONF macro delivered with
SMARTS.

Under the SMARTS server, the load module is identified on the SERVER statement or on the operator
command used to start the server.

The load module is specified using the ‘Configuration=’ parameter and defaults to HAANCONF.

Any attempt to use a module that was not generated according to the instructions in this section will cause
unpredictable results.

Sample HAANCONF Member

The HTPvrs.USER.SRCE statement contains a sample HAANCONF member. This may be copied and/or
modified to produce a number of different configuration options, if required. A configuration option can
then be selected by an operator when SMARTS is started.

Assembling the Configuration Member

Once the configuration source member has been created or modified, it must be assembled to produce the
associated load module for use by the system.

It must be linked into a load library in the COMPLIB concatenation of the SMARTS server environment
start-up procedure.

Software AG recommends that the HTPvrs.USER.LOAD dataset contain all configuration modules.

28

SMARTS HTTP ServerCustomizing and Using the HTTP Server

The member HJBNACNF on the HTPvrs.USER.SRCE dataset contains sample JCL to compile and link
the delivered HAANCONF member.

HTTP Server Parameters
The following parameters may be specified on the HMANCONF macro:

CGIPARM

Parameter Use Possible Values Default

CGIPARM
A parameter string to be passed to every CGI program
that is started.

1-256 byte parameter
string

none

The string is passed in standard OS/390 or MVS/ESA format where register 1 points to a pointer that
points to a half word length followed by the data.

CGIPARM is used to pass parameters or set runtime options for language environment-enabled programs.

CONTBUFL

Parameter Use
Possible
Values

Default

CONTBUFL
The size of a buffer allocated by the HTTP request processing
program to hold any HTTP content submitted with an HTTP
request.

1-32000 1024

If the content size exceeds the value set in this parameter, the request is rejected.

Changing this size affects the amount of local storage that the request processing program needs to run.

CONV

Parameter Use Possible Values Default

CONV Indicates whether the server supports conversational users. NO | YES NO

If NO, any program request to establish a conversation is rejected with an appropriate return and reason
code.

DEFACEE

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use
Possible
Values

Default

DEFACEE
Indicates whether the server will build a default ACEE for the user
specified in HTTPUSER during initialization and startup.

NO | YES NO

29

Customizing and Using the HTTP ServerSMARTS HTTP Server

Value Description

YES A default ACEE is built and associated with any user that does not log on to the system.

NO
Any user that does not log on to the system has the authority associated with the address
space.

DFLTCONT

Parameter Use
Possible
Values

Default

DFLTCONT
The default content type to be assigned to a URL if
the content type cannot be determined through the
dataset name or member type processing mechanism.

HTTP
content type
header

APPLICATION/
OCTET-STREAM

The web browser uses the content type header to determine what to do with data. For example, for content
type TEXT/HTML, the browser interprets the data as an HTML page. For content type IMAGE/GIF, the
browser attempts to interpret the data as a GIF file.

The default value causes the web browser to download as binary data any URLs for which the content
cannot be explicitly determined; that is, such URLs are downloaded as is without any translation.

DFLTURL

Parameter Use Possible Values Default

DFLTURL
The default URL to be returned to a user request
connecting to the HTTP server with no URL information.

default URL for your
installation

none

This circumstance occurs when the following URL is requested from a browser:

http://your.ip.address:port

Refer to the subsection later in this section relating to the specification of a default URL.

HTTPUSER

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use
Possible
Values

Default

HTTPUSER
The user ID with which each HTTP request is identified if
the HTTP request does not contain an authorization
header.

1-8 character
user ID

HTTPUSER

This is effectively the default user ID assigned initially to all requests.

30

SMARTS HTTP ServerCustomizing and Using the HTTP Server

HTTPLIST

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use Possible Values Default

HTTPLIST
The user ID assigned to the HTTP task that listens for
requests.

1-8 character user
ID

HTTPLIST

HTTPHCD

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use Possible Values Default

HTTPHCD
The hardcopy device name associated with any HTTP
users.

1-8 character
name

HTTPHCD

This output device name is used when the program attempts to write output to a SYSOUT/SYSLST type
device. For example, when LE/370 is active and an abend occurs, LE/370 writes a dump to this hardcopy
device name.

Output written to this device may be viewed and/or deleted using USPOOL or printed.

LOGON

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use Possible Values Default

LOGON
Determines the level of security that the
HTTP server will enforce.

ALLOWED | DISALLOWED |
REQUIRED

ALLOWED

The parameter must be used in association with the SMARTS server SECSYS configuration parameter.

Refer to the chapter on Security for more information about this parameter.

MSGCASE

Parameter Use Possible Values Default

MSGCASE The case in which messages are to be issued. MIXED | UPPER MIXED

31

Customizing and Using the HTTP ServerSMARTS HTTP Server

NATLIB

Parameter Use
Possible
Values

Default

NATLIB
Name of the default library where Natural CGI requests to the
HTTP server are directed.

1-8 character
name

NATCGI

If no library is provided on the CGI request, the program specified on the Natural CGI request to this
server must be cataloged in this library.

NATPARM

Parameter Use Possible Values Default

NATPARM
Parameter string to be provided as override parameters to
Natural for all Natural CGI requests.

1-256 byte
parameter string

none

Note:
The contents of this field are not validated in any way and may cause problems if invalid. Any string
should be thoroughly tested before being set in this parameter.

The ‘STACK’ override parameter is ignored if specified in this string.

NATTHRD

Parameter Use
Possible
Values

Default

NATTHRD
Under the SMARTS server environment, the name of the
thread-resident portion of Natural as created for the SMARTS
server environment TP monitor.

1-8
character
name

NATCOM

See Installing Natural CGI.

PORT

Parameter Use
Possible
Values

Default

PORT
The sockets port on which the HTTP server server should listen
for incoming HTTP requests.

1-32000 80

RECVBUFL

Parameter Use
Possible
Values

Default

RECVBUFL
The length of the buffer used for receiving input data from the
network.

1-32000 4096

32

SMARTS HTTP ServerCustomizing and Using the HTTP Server

When conversations are being supported, this buffer must be set to the highest incoming data size
expected for one incoming conversational HTTP request; otherwise, data may be lost.

When conversations are not being supported, this buffer is reused to read the entire incoming data stream.

Changing this size affects the amount of local storage the request processing program needs to run.

SEND

Parameter Use Possible Values Default

SEND
Determines how HTTP sends data in response
to a request.

IMMEDIATE |
BUFFERED

IMMEDIATE

Value Description

IMMEDIATE
Sends data as soon as it is available. Although it is more resource intensive, this option
is useful where requests are failing: the web user receives whatever data has been
created to the point of the failure.

BUFFERED

Buffers all data in the buffer created by the SENDBUFL parameter. If failures occur,
the end user may see no response data at all as the data is being buffered; however,
this is less resource and Entire Net-Work intensive. Because the BUFFERED setting
greatly increases the performance of the server, Software AG recommends that use it
in a production environment.

Note:
The SENDBUFL parameter must still be specified with SEND=IMMEDIATE as the data must be copied
and translated in some instances prior to being sent.

SENDBUFL

Parameter Use
Possible
Values

Default

SENDBUFL
The length of the buffer used for sending output data to the
network.

1-32000 4096

Changing this size affects the amount of local storage the request processing program needs in order to
run.

SERVNAME

Parameter Use Possible Values Default

SERVNAME Name to identify the system. 1-8 character name none

This name is included in all messages (except some start-up and termination messages) issued to the
operator during the execution of the HTTP server.

33

Customizing and Using the HTTP ServerSMARTS HTTP Server

The name may be used in the future by the HTTP server system to uniquely identify itself within a
machine.

SERVPOOL

Parameter Use
Possible
Values

Default

SERVPOOL
Indicates whether the HTTP server maintains a pool of
previously started HTTP servers.

NO | YES NO

Value Description

NO Pooled servers are not maintained and a new server is started for each HTTP request.

YES
The HTTP server reuses previously started servers, which can significantly enhance
performance.

TRACE

Parameter Use Possible ValuesDefault

TRACE
Turns on tracing to the DD statement identified by the
TRACEDD keyword.

HEADER |
DATA

none

One or both options may be specified. The options must be specified in parentheses. For example, the
following turns both traces on:

TRACE=(HEADER,DATA)

Value Description

HEADER
Dumps all HTTP headers and their associated data to the DD once they have all been read
and processed.

DATA

Traces all HTTP input data as it is read and all data being sent in response to the request
prior to it being sent. The data is printed in both character and hex formats. The hex
represents what is actually sent in ASCII. The character output is translated to EBCDIC so
that it can be read.

TRACEDD

Parameter Use Possible Values Default

TRACEDD
Name of the DD to which all HTTP trace data is
written.

1-8 character
name

HTPTRCE

If the DD name is not specified in the SMARTS start-up procedure, it is automatically allocated as a
SYSOUT dataset.

34

SMARTS HTTP ServerCustomizing and Using the HTTP Server

URLPBUFL

Parameter Use
Possible
Values

Default

URLPBUFL
Length of the buffer used for holding parameters passed on any
given URL request (that is, any data following ? in the URL).

1-32000 256

Depending on the nature of the requests in use, the length could be increased or decreased; however, if
there is insufficient space in this buffer, the request is rejected.

Changing this size affects the amount of local storage the request processing program needs in order to
run.

Content Processing
One of the most important pieces of information that the HTTP server provides to the web browser in
response to a HTTP request is the ‘content type’. This is the HTTP header that the browser uses to
interpret the data sent in response to the request. The HTTP server has a number of ways to determine
what the content type is.

Member Type Processing

When a member type is specified on a URL request, even though the mainframe operating system has no
concept of types as such, the HTTP server uses this type to look up a user configuration table
HAANTYPT to determine whether it can identify the content type of the URL.

The source for the table HAANTYPT is delivered in HTPvrs.SRCE and copied during installation to the
HTPvrs.USER.SRCE datasets for modification by the user. The table is built using the HMANTYPT
macro which has two parameters:

TYPE 1-8 character member type.

CONTENT

The content type to be returned to the browser when a member of this type is requested
on a URL. The HTTP server does not validate content types: any type may be specified
and new types are constantly being created. The sample HAANTYPT member contains
examples of commonly used content types.

Note:
The values specified for the above parameters are case-sensitive; for example, HTML and html are
different ‘TYPE’s.

Once modified, the HAANTYPT table must be reassembled into a load library in the SMARTS server
environment COMPLIB concatenation.

Software AG recommends that you use the HTPvrs.USER.LOAD dataset for this. Member HJBNTYPT in
the HTPvrs.USER.SRCE dataset contains sample JCL to assemble and link the HAANTYPT table.

If a match cannot be found for the type specified on the URL, or no type is specified on the URL, the
HTTP server attempts to determine the content type from the last level of the URL provided.

35

Customizing and Using the HTTP ServerSMARTS HTTP Server

Dataset Name Processing

The HTTP server breaks down the URL provided by the user into

a dataset name component; and

optionally a member and member type component

/this/is/a/pds/member.type is THIS.IS.A.PDS(MEMBER)

-or

/this/is/a/seq/file/ is THIS.IS.A.SEQFILE

On OS/390 or MVS/ESA systems, the HTTP server assumes that the last level of the resulting dataset
name indicates the sort of data contained in a given dataset. In the above examples, ‘PDS’ and ‘FILE’ are
the last levels.

Once the last level is determined, the HTTP server checks a second user-configurable table HAANDSNT
to determine if the last level can be used to map the URL to a content type. The HAANDSNT member is
provided on the HTPvrs.SRCE dataset and copied by the installation to the HTPvrs.USER.SRCE for
modification. HAANDSNT is built using the HMANDSNT macro which has the following parameters:

LASTDSNL The last level of the dataset name resulting from the interpretation of the URL.

CONTENT

The content type to be returned to the browser when a member from this dataset (or the
dataset itself, if sequential) is requested on a URL. The HTTP server does not validate
these content types: any type may be specified and new types are being created daily.
The sample HAANDSNT member contains examples of commonly used content types.

Note:
The values specified for the above parameters are case-sensitive; for example, HTML and html are
different ‘LASTLEVL’s. At present, all LASTLEVL specifications should be in uppercase as there is no
support for lowercase dataset names.

Once modified, the HAANDSNT table must be reassembled into a load library in the SMARTS server
COMPLIB concatenation.

Software AG recommends that you use the HTPvrs.USER.LOAD dataset for this. Member HJBNDSNT
in the HTPvrs.USER.SRCE dataset contains sample JCL to assemble and link the HAANDSNT table.

If a match cannot be found in the HAANDSNT table, the HTTP server uses the default as specified by the
DFLTCONT configuration parameter.

CGI Request Output Processing

Any CGI program, whether it is written in Natural, C, COBOL, or PL/1, may write a CONTENT-TYPE
header to the output stream to indicate the content it is going to send. If the HTTP server detects that no
CONTENT-TYPE header is sent by the CGI program, it sends a CONTENT-TYPE header using the
default content type for the system as specified by the DFLTCONT configuration parameter.

36

SMARTS HTTP ServerCustomizing and Using the HTTP Server

Configurable Tables
A number of translation tables are supplied with the HTTP server in source format.

Do not modify these tables, as incorrect modification may cause server problems for the server.

If you find errors in these tables, contact Software AG so that corrections can be made generally available.

HAANEUTT

The HAANEUTT table translates from EBCDIC to uppercase EBCDIC.

HAANIPTT

The HAANIPTT table translates from ASCII to EBCDIC.

HAANIUTT

The HAANIUTT table translates from ASCII to uppercase EBCDIC.

HAANOPTT

The HAANOPTT table translates from EBCDIC to ASCII.

HAANTOTT

The HAANTOTT table translates trace character output to ensure valid output data.

Default URL Processing
Care must be taken with the default URL specified for the HTTP server. If a file containing an HTML
page is set as the default, this file must not contain any relative URLs as any attempt to reference these
relative URLs from a page accessed as the default URL will fail.

The reason for this is that the browser sends a request for the dataset named ‘/’ which causes the HTTP
server to use the default URL specified in the configuration parameters. If this is a dataset, it will have the
form

/a/b/c/member.type

-and ‘member’ will be returned to the caller.

Any relative URLs in that member are relative to /a/b/c/; however, the browser does not know this and
assumes that they are relative to ‘/’, which is how it originally found it.

The browser translates the URL ‘./graphics/my.gif’ to be ‘/graphics/my.gif’ when, in fact, the URL should
be ‘/a/b/c/graphics/my.gif’.

As the HTTP server knows nothing about a dataset called simply ‘graphics’ with a member of ‘my’, the
request fails.

37

Customizing and Using the HTTP ServerSMARTS HTTP Server

There are two ways to avoid this problem:

In the default URL, specify absolute URLs only. This must only be done for one HTML file and as
such should not be a major problem to maintain.

Specify a CGI program as the default URL which either directs the web user to the correct URL or
rejects the request depending on how secure the server should be.

Resource Usage
The HTTP server itself uses a combination of local storage and global storage acquired explicitly by direct
requests for the storage and implicitly by using the SMARTS API requests.

The following sections outline the use of HTTP server storage.

Global Storage

The following storage areas used by the HTTP server are allocated in global storage above the 16
megabyte line in all environments:

Storage Area Size in Bytes

HTTP main control block (HMCB) 2048

Server storage stack 4096

Storage for pool server processing
<no of pooled
servers>*64

Storage for conversational users
<no of
conversations>*64

Storage for data pipe between processes. This is relatively short term as it is
allocated, written, read, and freed.

<max of RECVBUFL>
*<concurrent pipes>

HAANLIST Storage

The HAANLIST program listens on the specified port for HTTP requests and is fully reentrant. The
following storage areas are allocated for its processing needs:

Storage Area Size in Bytes

Working storage 256

Storage required for 2 sockets see the SMARTS environment estimates

Various working storage areas 1024

HAANRQST Storage

This program actually processes the HTTP request and is fully reentrant. The following storage areas are
allocated for its processing needs:

38

SMARTS HTTP ServerCustomizing and Using the HTTP Server

Storage Area Size in Bytes

Working storage 256

Storage required for 1 socket see the SMARTS environment estimates

Various working storage areas 1024

Storage for the HTTP request processing block 4096

Storage for the receive buffer RECVBUFL specification

Storage for send buffer SENDBUFL specification

URL parameter buffer URLPBUFL specification

Content buffer length CONTBUFL specification

For each request header received:
32+1+request header name
and header value

Additional Storage Used for CGI Requests

When a CGI request is processed, all of the headers must be set up as environment variables for the CGI
program; therefore, the following additional storage is allocated:

Storage Area Size in Bytes

Environment variable overhead see the SMARTS environment estimates

Additional data per variable HTTP request header length + data length + 1

Com-plete Considerations

Any additional storage required by the CGI program must be considered when calculating the thread size
and ULIB catalog size required by a given CGI program (in this case, the PAENSTRT program) to
function.

Pooled Server Processing
The HTTP server implements pooled server processing dynamically.

When a request is received, the HTTP server checks the pooled server queue to determine if any pool
servers are available. For the first request, no pool server is found so the system starts a server to process
the request. When the request is processed, the server puts itself on the pooled server processing queue.
When the next request arrives, the pooled server is found on the queue and is used to process the request.

Advantages of Pooled Servers

Using a pooled server rather than starting a new server saves the cost of starting and initializing a
new thread of control and terminating the request processing logic. Significant resources are thus
saved.

39

Customizing and Using the HTTP ServerSMARTS HTTP Server

The system creates pooled servers until a steady state is reached where a pooled server is always
available to process an incoming request.

If a pool server ABENDs for some reason, only the user being processed is affected. If insufficient
pooled servers are available, the HTTP server attaches more users.

Pooled servers are dormant while on the pooled server queue. They use no CPU. In Com-plete
environments, pooled servers are eligible for rollout so they do not occupy a thread.

The CLEARPOOL operator command makes it possible to clear the pooled server queue and
terminate all active pooled servers.

Considerations when Using Pooled Servers

A pooled server can process any type of request. For example, the first request it services may be a static
HTML deliver request, the second may be a COBOL program CGI request, the third may be a Natural
program CGI request.

The amount of storage available in the pooled server’s thread must be carefully considered to ensure
that sufficient unfragmented storage is available to run whatever request may arrive. To that end, it
may be advisable to have a separate HTTP server processing Natural requests only.

Because a pooled server instance never really terminates, CGI programs must clean up after
processing to avoid a negative impact on following requests.

Natural Considerations

When a Natural CGI request is issued and a new thread must be started, the Natural interface is started
and, using an internal inverted call mechanism, Natural CGI programs are driven.

Using the inverted mechanism to call Natural means that the Natural environment is only started once per
pooled server so that the next time a Natural CGI request is handled by the same pooled server, no Natural
initialization/termination is required.

In this way, a significant savings is realized in both CPU and wall clock time required to process Natural
CGI requests.

Conversational Processing
Instead of maintaining a generic queue of active user threads, a more specific queue is maintained for
conversational processing.

A conversation is maintained by sending a session-specific cookie to the browser with the output from the
CGI program. The cookie is returned with the next request that enables the HTTP server to match the
incoming request with the active request on the conversational request queue.

The incoming data is piped to the program in conversation and the conversational program is dispatched
again to process the request from the user with whom it is in conversation.

If a conversational program terminates due to a timeout or an ABEND, the next time the user attempts to
converse with the other user in the conversation, a message is issued to indicate that the conversation no
longer exists.

40

SMARTS HTTP ServerCustomizing and Using the HTTP Server

Installing NATURAL CGI
SMARTS supports the Natural runtime system as documented in the Natural manuals in the section for
Com-plete.

Follow the steps for installing Natural under this environment as required.

The Natural installation should be complete and working in the environments where the HTTP server is to
run before attempting to support the Natural CGI processing.

The SMARTS HTTP server requires either Com-plete version 6.1 (or above) or Natural version 3.2 (or
above) to support the Natural CGI processing. The Natural Web Interface is supported by Natural version
3.1 and above.

Note:
For a Natural version 2.2 installation under Com-plete, ensure that the HTPvrs.SRCE precedes any
Natural datasets in the SYSLIB concatenation in all assembly jobs.

This chapter covers the following topics:

Natural 2.2 Support

Natural Tasks

Relationship to the HTTP Server Configuration

Invoking a Natural CGI Program

Installation Verification

Additional Notes

Using the Natural Web Interface

Natural 2.2 Support
This product has been tested and fully supports Natural 2.2.8 and Natural 2.3.1. Contact Software AG if
you need support for earlier, supported versions of Natural version 2.2.

Natural Tasks
A number of additional tasks are required to ensure that the Natural CGI processing operates successfully.
Note that the HNANSHEL program delivered with the product is a Natural program itself and an integral
part of the Natural CGI processing logic.

Follow the next steps carefully:

1. Ensure that the HTPvrs Natural library has been INPLed as part of the installation process.

41

Installing NATURAL CGISMARTS HTTP Server

2. Copy the HHANSHEL object from the HTPvrs Natural library to the SYSTEM library on FUSER to
ensure that this module is always available to the HTTP server.

See step 4 as an alternative to this step when Natural Security is installed.

3. Copy the Natural subprograms USR0050N, USR0330N, and USR1025N from the SYSEXT Natural
library to the SYSTEM library on FUSER.

4. As an alternative to step 2 when Natural Security is installed, make SYSEXT a STEPLIB in the
Natural environment.

Relationship to the HTTP Server Configuration
The following parameters specified in the HTTP server configuration are directly associated with the use
of Natural CGI:

Parameter Description

HTTPUSER
The default user ID for a user who is able to issue a Natural CGI request. The user ID is
passed on to Natural and must therefore be defined, for example, if Natural Security is
installed Note: Applies only when running under Com-plete.

LOGON

If the HTTP server is running with security, Natural is passed either the default user ID
as specified by HTTPUSER or the user ID for which the user provided a valid user ID
and password. Once again, there may be Natural Security or other implications. Note:
Applies only when running under Com-plete.

NATLIB
Name of the Natural library where the HTTP server tells Natural to look for a Natural
program specified on an HTTP request when no Natural library is specified.

NATPARM
Where appropriate or necessary, Natural parameters may be specified here to override
parameters generated in the Natural parameters in the nucleus. The ‘STACK’ parameter
is ignored if specified in this string.

NATTHRD
In the SMARTS server environment, the name of the thread-resident portion of Natural
generated during the Natural installation process.

Software AG recommends that you leave the following Natural parameters in the HTTP configuration
parameters by default:

IMSG=NO
Prevents Natural from trying to write the ‘terminal’ if there are certain
start-up errors. If not specified, Natural tries to write the message and the
NATCGI request ABENDs.

OUTDEST=CONSOLE
Causes Natural to write messages to the console again, where it would
otherwise try to send messages to the ‘terminal’.

Invoking a Natural CGI Program
A Natural CGI program is invoked using the standard browser URL

42

SMARTS HTTP ServerInstalling NATURAL CGI

http://ip-addr:port/natcgi/program

-where ‘program’ is the Natural program you want to run, which exists in the Natural library specified in
the NATLIB configuration parameter.

If you want to provide a Natural library name, use the URL

http://ip-addr:port/natcgi/library/program

-where ‘library’ is the Natural library where ‘program’ resides.

Note:
All programs to be run using Natural CGI must be cataloged; that is, they must be in object format.

Installation Verification
To test the installation:

1. Invoke a program that does nothing.

Such a program is provided in the HTPvrs Natural INPL file delivered with SMARTS as
HNANWTOP.

2. Stow the program HNANWTOP in your NATCGI library.

3. Try to invoke it from a web browser using the URL

http://ip-addr:port/natcgi/hnanwtop

You will receive no output at your browser; however, the message in the program should be written
to the operator console.

4. If this is successful, test the sample Natural CGI program:

Ensure that the HNANSAMP program is stowed or cataloged in the default CGI library specified by
the NATLIB configuration parameter.

Invoke the URL

http://ip-addr:port/htpvrs/srce/hhannatt.htm

When you enter your name, the HNANSAMP program should be invoked and echo your name back to the
browser.

Additional Notes
The following should also be taken into consideration when installing Natural CGI:

1. The Natural start-up program in all environments must be linked with AMODE=31.

2. There must be no start-up errors from Natural as this will force Natural to try to write to the terminal
or CMPRINT about the errors, which in turn can cause unpredictable results. This will also cause the
Natural CGI request to fail.

43

Installing NATURAL CGISMARTS HTTP Server

3. If Natural CGI processing cannot be activated for Natural version 2.2, the most likely cause is that
the modified NTCOMP macro on the HTPvrs.SRCE dataset has not been used during the compilation of
the thread-resident part during the Natural installation process.

Using the Natural Web Interface

Required Tasks

To ensure successful operation of the Natural Web Interface:

1. Ensure that the Natural CGI processing is installed and working correctly; and

2. INPL the modules supplied in the HTPvrs.UPDW update dataset onto the existing SYSWEB library.

The programs NWWAPS and W3APSENV are an integral part of the Natural Web Interface
processing.

Invoking a Natural Web Interface Program

To invoke a Natural Web Interface program, use the standard browser URL

http://ip-addr:port/natcgi/sysweb/nwwaps/library/subprogram

-where

library is the Natural library where ‘subprogram’ resides

subprogram is the Natural subprogram you want to run

Note:
All programs to be run using the Natural Web Interface must be cataloged; that is, they must be in object
format.

Installation Verification

To test the installation, use the demo application supplied with the INPL update:

1. Catalog all the D5* programs in the SYSWEB library using a valid EMPLOYEES DDM.

The demo includes pictures, which are supplied on the HTPvrs.GIFS dataset.

2. To make the pictures accessible, set up an environment variable ’PICTURES’ in the CONFIG file for
the Com-plete or SMARTS server under which the HTTP server is running.

For example:

PICTURES=/HTPvrs/GIFS

3. If required, add the UDB parameter to the Natural start-up parameters in the HTTP server
configuration module.

44

SMARTS HTTP ServerInstalling NATURAL CGI

4. Invoke the demo from a web browser using the URL

http://ip-addr:port/natcgi/sysweb/nwwaps/sysweb/d5menu

Additional Notes

For additional information about the Natural Web Interface, refer to the Natural 3.1 documentation.

45

Installing NATURAL CGISMARTS HTTP Server

Security
Note:
This chapter applies only when the HTTP server is running in the SMARTS server environment.

Security on the Internet is a major concern of installations publishing IBM mainframe data.

The SMARTS server environment is fully integrated with the Security Authorization Facility (SAF) on
OS/390 and MVS/ESA systems and can thus work with CA-ACF/2, RACF or CA-Top Secret. This
integration involves

verifying with the security system any provided user ID and password; and

building an ACEE for each user that logs on to the system.

The SMARTS server environment then ensures that when the user issues a request to access any resource,
the ACEE associated with that request is the one built for the user logging on. In this way, the security
system can control access from multiple users with different security profiles from the same address
space.

This chapter covers the following topics:

The Default User

HTTP Server Security Integration

Natural Security Considerations

Implementing SAF Security

The Default User
When the HTTP server initially starts processing a request, it knows nothing about the user until it reads
various HTTP header areas. Even then, there may be no information about the user.

For this reason, each request is assigned a ‘default’ user ID using the HTTPUSER configuration
parameter. The SMARTS server sees the ‘default‘ user ID for the duration of the request unless the user
has provided some authorization information in the HTTP headers.

When security is active, the ‘default’ user ID receives the CA-ACF/2, RACF or CA-Top Secret
authorization of the SMARTS server address space.

To better identify the default user, Software AG recommends that you specify DEFACEE=YES in the
configuration parameters. The HTTP server then builds a default ACEE for the user ID specified by
HTTPUSER and ensures that each user running with the default user ID runs with an ACEE built for that
default user. Note that when DEFACEE is specified, the user ID specified in HTTPUSER must be defined
to the security system; otherwise, the HTTP server initialization fails.

46

SMARTS HTTP ServerSecurity

HTTP Server Security Integration
The HTTP server integrates with the SMARTS server security facilities fully by passing on to the security
system for verification any user ID and password information provided with a HTTP request. If the user
ID and password is verified, from that moment on, any request initiated on behalf of that HTTP request is
verified based on the user ID provided.

However, because different HTTP servers have different security requirements, it is possible to run the
HTTP server in a number of modes as defined by the LOGON configuration parameter.

Note:
SAF security processing must be active in the underlying SMARTS server system before the HTTP server
security processing functions correctly.

Logon Allowed (LOGON=ALLOWED)

This is the default mode in which the HTTP server runs. In this mode, all HTTP requests are accepted and
dispatched without any logon requirements from the user. They are dispatched with the authorization of
the default user as discussed earlier.

If the HTTP request attempts to access a resource to which the default user does not have access, a
response is sent to the browser requesting that the user provide authorization information; i.e., a user ID
and password. When this is submitted, it is verified with the underlying system and the request may then
be repeated using the user’s security profile. If the access attempt also fails for security reasons, the user’s
request is rejected.

This mode is intended for servers where unsecured and secured resources are available. Secured resources
are only available to users that provide a valid user ID and password that has access to the secured data.
Unsecured resources are available to all users that can connect to the server.

Logon Required (LOGON=REQUIRED)

When this mode is specified, the HTTP server requires a user to provide valid authorization criteria (that
is, a valid user ID and password) with each request to the HTTP server. The first time a user attempts an
access without authorization information, the HTTP server requests this information from the browser,
which in turn requests it from the client.

This information is verified with the underlying security system: access to the server is only permitted if
the user ID and password are successfully validated. From that point on, anything that the user does within
the server is checked against the security profile for the user ID provided. If a resource is requested to
which the user has no access, the request is simply rejected as the user already provided authorization
criteria.

This mode is intended for servers where only secure resources are available or servers that should only be
used by authorized personnel (that is, by people defined to the security system).

Logon Disallowed (LOGON=DISALLOWED)

When this mode is specified, the HTTP server ignores any authorization information provided as part of
the HTTP request. All users connecting to the server run with the authority of the default user. In this way,
the default user is only allowed access to that data that should be publicly available on the Internet.

47

SecuritySMARTS HTTP Server

This mode is intended for servers that are available publicly and where the installation does not want user
IDs and passwords to be submitted over the net to the server.

HTTP User ID and Password Encryption

When authorization information is provided to an HTTP request, it is encrypted using a simple and
publicly available encryption mechanism. It is more secure than TELNET and FTP, which submit
passwords in clear text over the net.

The HTTP server security logic fully secures an installation where the network itself is a "trusted"
network. Generally, only Intranets may be considered trusted.

Where a server is available publicly on the Internet, a number of additional measures can be used to
improve the security offered by this mechanism:

Force people to change user IDs and passwords on a regular basis.

Use conversational CGIs. Once the user ID and password are provided on the first CGI request of a
conversation, it is no longer necessary to send them again until the conversation terminates.

Allocate only user IDs and passwords for short periods of time to allow access to the system over a
restricted time frame.

The encryption mechanism may also be useful for controlling access to resources that a server
provides. While the data may not be sensitive, perhaps only users who have paid for a given service
should be able to access the data. The encryption mechanism can ensure that only those who have
been supplied with a valid user ID and password can access the system.

Natural Security Considerations
When Natural acquires control with AUTO=ON, the user ID that is active in the SMARTS server
environment is supplied to Natural Security. Where no logon has occurred, this is the user ID defined
using the HTTPUSER configuration parameter. If a user provides configuration information and this is
accepted and verified by the HTTP server, the user ID provided for the logon is passed to Natural
Security.

Once again, Natural Security could be set up to restrict the public HTTPUSER user ID while allowing
increased access based on a user ID for which a valid security system user ID and password is supplied.

Implementing SAF Security
Security must first be implemented in the SMARTS server environment system by specifying the
configuration parameter SECSYS. This parameter is used to inform the SMARTS server environment
whether RACF, CA-ACF2 or CA-Top Secret is in place.

Refer to the SMARTS Installation and Operations Manual for more information about configuration
parameters.

Once the security system is active, you must determine the appropriate level of access for each HTTP
server and set the required LOGON configuration parameter in the server’s configuration.

48

SMARTS HTTP ServerSecurity

Programming CGI Requests
This chapter covers the following topics:

HAANUPR: The HTTP Server User Program Request Module

HAANCGIG Interface Module

HAANCGIL Interface Module

HAANCGIP and HAANCGIT Interface Modules

CGI Extension Interface Module Status

HAANUPR: The HTTP Server User Program Request
Module
All current and future user program requests are serviced using the HAANUPR module. The basic call to
the module is documented here.

Each call has the format

HAANUPR status function parm1 parm2 <..> parmn

-where

status
returns the status of the request in the form of a two-byte return code and two-byte
reason code in contiguous storage.

function
the name of the function to be invoked. The name must be in character format as
described in the following subsections, left aligned in the 16-byte field and padded to the
right with blanks.

parm1,
parm2, ...

a set of parameters specific to the function named and described in the subsection
devoted to that function.

Each available function is described in the following section along with its parameters and a list of return
and reason codes and their meanings.

Standard Return and Reason Codes

The following reason and associated return codes may be returned on any request to HAANUPR:

49

Programming CGI RequestsSMARTS HTTP Server

Reason
Code

Return
Code

Meaning

4 8
Request failed due to insufficient storage. HAANUPR attempts to acquire a
save and work area of about 90 bytes from local storage. If it fails, this status is
returned.

40 12
Not an HTTP request. The HAANUPR request was issued from a program that
was not running as an HTTP server request.

52 12

Unrecognized request. The 16-character function area provided as the second
parameter to HAANUPR contained a function request that HAANUPR did not
recognize. This may occur for the following reasons:
• the character string in the field is either misspelled or not a valid
function name.
• the string contains lowercase characters. All function identifiers
must be in uppercase.
• the field length was not 16 characters. The function name must be
left-aligned and padded to the right with blanks (not nulls).

The CONVERSE Function

The CONVERSE function is used by conversational CGI programs that wish to maintain a connection
with the client browser. Refer to the section in this manual that discusses conversational CGI programs for
more information. This function may only be issued after an ENABLE-CONVERSE has been
successfully issued and some data has been written to stdout. If the CONVERSE is successful, when the
program is next dispatched, the user response to the data sent by the CONVERSE will be available to the
application program.

This function is invoked as follows:

HAANUPR status ‘CONVERSE’

CONVERSE Parameters

The CONVERSE function has no additional parameters.

CONVERSE Return and Reason Codes

Reason
Code

Return
Code

Meaning

56 8

Conversational sequence error. The CONVERSE request may only be issued
after some data has been written in response to an HTTP request. It is not
possible to converse if the user has not received a mechanism with which to
respond; i.e., an HTML form.

60 8

Conversation error. A request was received to converse, however, no ENABLE-
CONVERSE was previously issued. The CGI program must first
indicate that it wishes to establish a conversation by issuing an
ENABLE-CONVERSE function call.

50

SMARTS HTTP ServerProgramming CGI Requests

The DISABLE-CONVERSE Function

The DISABLE-CONVERSE function indicates that the user program no longer wishes to converse with
the client browser. This function may only be issued after an ENABLE- CONVERSE has been
successfully issued at some time previously. It must also be issued prior to any output data being sent to
the client browser for a given conversation. In other words, after a program has been redispatched after a
CONVERSE call, if the conversation is to be terminated, the DISABLE-CONVERSE must be issued
before any final output is written to the client browser.

This function is invoked as follows:

HAANUPR status ‘DISABLE-CONVERSE’

DISABLE-CONVERSE Parameters

The DISABLE-CONVERSE function has no additional parameters.

DISABLE-CONVERSE Return and Reason Codes

Reason
Code

Return
Code

Meaning

56 8

Conversational sequence error. The DISABLE-CONVERSE request may only be
issued before any data has been written in response to the current HTTP request.
The HTTP server must know before the response is written that this is the last
output for the conversation.

64 8

Conversations not supported. This indicates that the HTTP server CONV
configuration parameter for the server is set to NO indicating that the server is
not supporting
conversations.

The ENABLE-CONVERSE Function

The ENABLE-CONVERSE function indicates that a CGI program wishes to start a conversation with the
client browser. It must be issued before any output whatsoever is issued in response to a request
otherwise, the request will fail. Once this request has been issued, the session will remain in conversation
with the client browser until a DISABLE-CONVERSE is issued or the program terminates.

This function is invoked as follows:

HAANUPR status ‘ENABLE-CONVERSE’

ENABLE-CONVERSE Parameters

The ENABLE-CONVERSE function has no additional parameters.

ENABLE-CONVERSE Return and Reason Codes

51

Programming CGI RequestsSMARTS HTTP Server

Reason
Code

Return
Code

Meaning

56 8

Conversational sequence error. The ENABLE-CONVERSE request may only be
issued before any data has been written in response to the current HTTP request.
The HTTP server must know before the response is written that the CGI
program wishes to converse.

64 8

Conversations not supported. This indicates that the HTTP server CONV
configuration parameter for the server is set to NO indicating that the server is
not supporting
conversations.

The GET-DATA Function

The GET-DATA function may be used to get the value of a field name submitted as part of a CGI request.
It may also be used to test for the existence of certain fields on the screen which may be used when lists
are presented in HTML format to a user. These lists result in a field name with no value being submitted
as part of a CGI request when they are selected.

The interface module will search either the input parameter area as provided when using the GET HTTP
method, or the content area as provided when using the POST HTTP method. If the variable requested is
not found in the input from the HTML page, or if it has not been specified that only the HTML page must
be searched, the interface module will check for a server defined variable (i.e. a defined environment
variable) of this name. The caller of this interface module does not have to worry about the type of HTTP
method that generated the CGI request as this is handled by the interface module.

This function is invoked as follows:

HAANUPR status ‘GET-DATA’ field value length type start

GET-DATA Parameters

52

SMARTS HTTP ServerProgramming CGI Requests

field

is the name of the field from the HTML page for which this request is being issued. This field
name must be terminated with a blank in order for the interface routine to correctly determine
the length of the field name for which it is searching. Note: The longest variable name that can
currently be handled by this interface is 255 bytes excluding the blank.

value

is a field with a minimum length of the binary value specified in the length field. If this area is
smaller than the length specified in the ‘length’ parameter, overwrites will occur and the
results will be unpredictable. When the field name specified in the ‘field’ parameter is found
in the CGI input and has a value associated with it, the value submitted for the field is copied
to this area for a maximum length of the length specified in the length parameter. The value is
truncated if longer than this and a return and reason code set to indicate this event. If the value
is shorter than the length set in the ‘length’
parameter, the actual length of the value will be set in the ‘length’ parameter.

length
is a 2-byte binary value containing the length of the area provided for the value to be returned
in the ‘value’ parameter. This is set to the length of the returned value if the field name is
found and has a value associated with it.

type

is a one-byte alpha indicating the type of variable which is to be returned and may be used to
restrict the search as follows: ‘S’ Request server defined variable. ‘P’ Request variable defined
on the HTML page. ‘ ‘ First found will satisfy request. When the request is completed and the
variable requested is found, this field is modified to contain an ‘S’ or a ‘P’ depending on
where the variable was found.

start

is a two-byte binary field that may be specified to indicate the offset from which the requested
variable is to be returned. Its purpose is to enable a program to obtain the contents of a long
text field in chunks. When this field is not specified, the default is to start at position 0 of the
input field which is the start of the field.

Note:
Where a field name appears twice on a HTML page, only the first is accessible using this mechanism. For
this reason, HTML pages designed to work with this mechanism should use unique names although it is
perfectly legal in HTML terms to have the same field names specified many times. To process multiple
fields with the same name, the LIST-DATA function must be used.

GET-DATA Return and Reason Codes

53

Programming CGI RequestsSMARTS HTTP Server

Reason
Code

Return
Code

Meaning

8 12 Invalid length supplied in a length field to the interface function.

20 4
Variable length error. It was not possible to return the full length of a variable
due to the fact that insufficient space was provided in the users’ parameters to
hold the value to be returned.

24 12 The format of the parameters provided was invalid.

28 8 Variable name requested was not found in the CGI data.

32 16
A logic error occurred due to the format of the content data provided with the
CGI request.

36 8 Insufficient space to return data.

40 12
Returned when these modules are called from a program which is not running
as a result of an HTTP request and therefore does not have the data available to
satisfy the request.

48 12
Invalid parameter list. This indicates that one or more parameters for a given
request have not been provided or contain invalid data.

The LIST-DATA Function

The LIST-DATA function may be used to get a list of both the variable names from the HTML page and
their values, and the server defined or environment variables defined at the server for the request. The
interface allows that one or more of these variables may be returned at the same time and multiple
requests may be made to return all defined variables to the application program.

The server defined or environment variables are returned first, while the variables found in the HTML
page are returned once all environment variables have been returned. When issuing multiple requests, the
same TOKEN parameter must be provided to the interface each and every time until the list is exhausted.

This function is invoked as follows:

HAANUPR status ‘LIST’ token entries name-length
 name1 value-length1 value1 type1
 name2 value-length2 value2 type2
 <..>
 name n value-length n value n typen

LIST-DATA Parameters

54

SMARTS HTTP ServerProgramming CGI Requests

token

is a 4-byte binary token used by the interface for multiple requests. When this is null,
the listing of variables starts from the first one found. When all variables available
cannot be found, this is set to an internal token value to allow the interface to continue
the list at the next variable to be returned. The token is reset to null when all available
values have been returned to the caller.

entries

is a 4-byte binary field containing the number of variable name and value entries which
the application program may accept from the interface in one call. For each entry, a set
of return variables (name, value-length, value and type) must be provided, otherwise the
results will be unpredictable. When the call completes, this field contains the number of
variable sets returned. This must be used in association with the return and reason codes
to determine if all data has been returned or if any data has been returned (the last call
may have exhausted the list but may not be obvious from the return, reason codes and
entries value returned).

name-length
is a 4-byte binary field containing the maximum length of variable name that can be
returned. This must be set based on the length of the name fields passed to the interface.

The following constitute a set which is required to return the information about a given variable to the
application program. For each entry specified, a set of fields must be provided to contain the data to be
returned. Failure to do this will result in unpredictable results.

name
is an alpha field in which the name of a server or HTML page variable is returned. Its
maximum length is determined by the name-length variable. If any name to be returned
to the application exceeds this length, the value is truncated.

value-length

is a 4-byte binary field containing the maximum length of the value for the variable that
can be accepted for this variable instance. The following value field must have at least
this amount of space allocated for it, otherwise, overwrites will occur. When a variable
value is returned, this field is changed to reflect the true length of the value as
determined from the data. If the value is longer than the value specified here, the value
is truncated and this field remains
unchanged.

value

is an alpha field in which the value for the variable name associated with this value field
is returned. It must be at least as long as the value specified in its associated
value-length field, otherwise storage overwrites may
occur. When a variable is found, its name is returned in the associated ‘name’ parameter
and the value is returned in this field. The actual length of the value is set in the
associated value-length field when the variable name is found. If the value is longer than
the value-length specification, the value is truncated.

type

is a 1-byte alpha field that indicates where the variable with which it is associated was
found. When the variable is an environment variable set in the server environment, this
field contains a ‘S’. When the variable was found on the HTML page returned from the
client, this field contains ‘P’.

LIST-DATA Return and Reason Codes

55

Programming CGI RequestsSMARTS HTTP Server

Reason
Code

Return
Code

Meaning

8 12 Invalid length supplied in a length field to the interface function.

20 4
Variable length error. It was not possible to return the full length of a variable
due to the fact that insufficient space was provided in the users’ parameters to
hold the value to be returned.

24 12 The format of the parameters provided was invalid.

32 16
A logic error occurred due to the format of the content data provided with the
CGI request.

36 8 Insufficient space to return data.

40 12
Returned when these modules are called from a program which is not running as
a result of an HTTP request and therefore does not have the data available to
satisfy the request.

44 4

End of data reached. This will be set for the LIST-DATA function when all data
has been returned. The application program should check the ‘entries’ field as
the number of entries returned may be ‘0’ depending on the sequence of
LIST-DATA function requests.

48 12
Invalid parameter list. One or more parameters for a given request have not been
provided or contain invalid data.

The PUT-BINARY Function

The PUT-BINARY function enables a CGI application program to send output in response to the CGI
request. This output is provided to the HTTP server in the same way as ‘standard’ CGI output is
processed.

The PUT-BINARY function differs from the PUT-TEXT function only in terms of the way it processes
the parameters passed to it. PUT-BINARY simply takes the data and length provided at face value and
passes them directly to the HTTP output processing module. Refer to the section on PUT-TEXT for
information about how it processes output.

This function is invoked as follows:

HAANUPR status ‘PUT-BINARY’ data length

PUT-BINARY Parameters

data is the data or the field containing the data to be output in response to the CGI request.

length
is a 2-byte binary value containing the length of the data area provided. The contents of the
data area are output for exactly the length specified in this field.

PUT-BINARY Return and Reason Codes

56

SMARTS HTTP ServerProgramming CGI Requests

Reason
Code

Return
Code

Meaning

8 12 Invalid length supplied in a length field to the interface function.

12 4 Warning returned from the HTTP server output processing module.

16 8 Error returned from the HTTP server output processing module.

24 12 The format of the parameters provided was invalid.

32 16
A logic error occurred due to the format of the content data provided with the
CGI request.

40 12
Returned when these modules are called from a program that is not running as
a result of an HTTP request and therefore does not have the data available to
satisfy the request.

48 12
Invalid parameter list. One or more parameters for a given request have not
been provided or contain invalid data.

The PUT-TEXT Function

The PUT-TEXT function also enables a CGI application program to send output in response to the CGI
request. This output is provided to the HTTP server in the same way as ‘standard’ CGI output is
processed.

The PUT-TEXT function differs from the PUT-BINARY function only in terms of the way it processes
the parameters passed to it. PUT-TEXT assumes text output and strips all trailing non-printable characters
from the end of the provided data (as determined from the provided data and length) up to the first
character that has a value greater than blank. The only exception to this is where a carriage return (X‘0D’)
or a line feed (X‘0A’) is encountered. In either case, this will also be treated as valid data and treated as
the last character in the output data. This is useful where a standard area and length are to be used as
output text data as the program generating the output must include the CR or LF characters to format text
correctly. Using the PUT-BINARY request, anything following the CR or LF is also treated as data and
may cause output to ‘skew’.

This function is invoked as follows:

HAANUPR status ‘PUT-TEXT’ data length

Note:
Use of this function has no bearing on the way data is translated; only on the way the actual length of the
data is calculated prior to output. After it has been output, translation occurs based on the criteria
described earlier.

PUT-TEXT Parameters

data is the data or the field containing the data to be output in response to the CGI request.

length
is a 2-byte binary value containing the length of the data area provided. This must contain the
maximum length of the data area. As stated previously, PUT-TEXT strips off all trailing
non-printable characters in the data area.

57

Programming CGI RequestsSMARTS HTTP Server

PUT-TEXT Return and Reason Codes

Reason
Code

Return
Code

Meaning

8 12 Invalid length supplied in a length field to the interface function.

12 4 Warning returned from the HTTP server output processing module.

16 8 Error returned from the HTTP server output processing module.

24 12 The format of the parameters provided was invalid.

32 16
A logic error occurred due to the format of the content data provided with the
CGI request.

40 12
Returned when these modules are called from a program which is not running
as a result of an HTTP request and therefore does not have the data available to
satisfy the request.

48 12
Invalid parameter list. This indicates that one or more parameters for a given
request have not been provided or contain invalid data.

HAANCGIG Interface Module
Note:
This documentation is only provided for compatibility. All applications should use the HAANUPR
GET-DATA function to achieve this functionality.

The HAANCGIG module obtains the value of a field name submitted as part of a CGI request.

It also determines the existence of fields selected from lists presented to the user in HTML format which
result in a field name with no value being submitted as part of a CGI request.

The interface module ascertains the type of HTTP method used to generate the CGI request and searches

the input parameter area as provided when using the GET HTTP method; or

the content area as provided when using the POST HTTP method.

If the variable requested is not found in the input from the HTML page and if the search has not been
restricted to the HTML page only, the interface module checks for a server-defined variable (that is, a
defined environment variable) of this name.

It is not necessary to be concerned about the HTTP method that generated the CGI request when calling
the interface module as this is handled by the interface module itself.

The HAANCGIG interface module must be invoked with the following parameter list:

HAANCGIG status field value length type start

-where

58

SMARTS HTTP ServerProgramming CGI Requests

status returns the status of the request

field

names the field from the HTML page for which the request is being issued. The field name
must be terminated with a blank in order for the interface routine to correctly determine the
length of the field name for which it is searching. The longest variable name that can currently
be handled by this interface is 255 bytes excluding the blank.

value

is a field with a minimum length of the binary value specified in the length field. If this area is
smaller than the length specified in the ‘length’ parameter, overwrites occur and the results are
unpredictable. When the field name specified in the ‘field’ parameter is found in the CGI input
and has a value associated with it, the value submitted for the field is copied to this area for a
maximum length specified in the length parameter.
If the value is longer, it is truncated and a return and reason code are set.
If the value is shorter, the actual length of the value is set in the ‘length’
parameter.

length
is a 2-byte binary value containing the length of the area provided for the value to be returned
in the ‘value’ parameter. This is set to the length of the returned value if the field name is
found and has a value associated with it.

type

is a one-byte alpha field indicating the type of variable to be returned. It may be used to
restrict the search as follows: ‘S’ request server-defined variable. ‘P’ request variable defined
on the HTML page ‘ ‘ first found satisfies request. When the request is completed and the
requested variable is found, this field is modified to contain an ‘S’ or ‘P’ depending on where
the variable was found.

start

is a two-byte binary field used to indicate the offset from which the requested variable is to be
returned. This information makes it possible for a program to obtain the contents of a long text
field in chunks. By default, the program starts at the beginning of the field, which is position 0
of the input field.

Note:
If a field name appears twice on an HTML page, only the first occurrence is accessible using this
mechanism. Thus HTML pages designed to work with this mechanism should use unique field names,
although HTML itself allows the same field names to be specified multiple times.

HAANCGIL Interface Module
Note:
This documentation is provided only for compatibility. All applications should use the HAANUPR
LIST-DATA function to achieve this functionality.

The HAANCGIL module is used to obtain a list of

the variable names from the HTML page and their values; and

the server-defined or environment variables defined at the server for the request.

The interface allows one or more of these variables to be returned at the same time and multiple requests
may be made to return all defined variables to the application program.

59

Programming CGI RequestsSMARTS HTTP Server

The server-defined variables or environment variables are returned first, while the variables found in the
HTML page are returned after all environment variables have been returned.

The HAANCGIL interface module must be invoked with the following parameter list:

HAANCGIL status token entries name-length
 name1 value-length1 value1 type1
 name2 value-length2 value2 type2
 ...
 namen value-lengthn valuen typen

-where

status
is used to return the status of the request as documented in the
section Interface Module Status.

token

is a 4-byte binary value used by the interface for multiple
requests. When the token value is null, the listing of variables
starts from the first one found. When all variables available
cannot be found, "token" is set to an internal value to allow the
interface to continue the list at the next variable to be returned.
The token value is reset to null when all available values have
been returned to the caller.

entries

is a 4-byte binary field containing the number of variable name
and value entries which the application program may accept from
the interface. For each entry, a set of return variables (name,
value-length, value, and type) must be provided; otherwise, the
results are unpredictable. When the call has completed, this field
contains the number of variable sets returned. This number must
be used in association with the return and reason codes to
determine if all data has been returned or if any data has been
returned (the last call may have exhausted the list but may not be
obvious from the return/reason codes and entries value returned).

name-length
is a 4-byte binary field that specifies the maximum length of the
variable ‘name’ that can be returned. This length must be set
based on the length of the ‘namen’ fields passed to the interface.

For each entry specified, a set of
fields must be provided to contain
the data to be returned. Failure to
provide these fields produces
unpredictable results. The
following fields comprise the set
required to return the information
about a given variable to the
application program:

name

is an alpha field in which the name of a server or HTML page
variable is returned. The maximum length of the name is
determined by the variable ‘name-length’. Any name to be
returned to the application that exceeds this length is truncated.

60

SMARTS HTTP ServerProgramming CGI Requests

value-length

is a 4-byte binary field containing the maximum length of the
variable ‘value’ that can be accepted for this variable instance.
The following
‘value’ field must have at least this amount of space allocated for
it;
otherwise, storage overwrites occur. When a variable ‘value’ is
returned, this field is changed to reflect the true length of the
‘value’ as determined from the data. If the ‘value’ is longer than
the ‘value-length’ specified here, the ‘value’ is truncated and the
‘value-length’ field remains unchanged.

value

is an alpha field in which the value for the variable ‘name’
associated with this value field is returned. This field must be at
least as long as the value specified in the associated
‘value-length’ field; otherwise, storage overwrites occur. When a
variable is found, its name is returned in the associated ‘name’
parameter and the value is returned in this field. The actual length
of the value is set in the associated ‘value-length’ field when the
variable name is found. If the value is longer than the
value-length specification, the value is truncated.

type

is a 1-byte alpha field that indicates where the associated variable
was found. When the variable is an environment variable set in
the server
environment, this field contains ‘S’. When the variable was found
on the HTML page returned from the client, this field contains
‘P’.

HAANCGIP and HAANCGIT Interface Modules
Note:
This documentation is provided only for compatibility. All applications should use the HAANUPR
PUT-BINARY and PUT-TEXT functions to achieve this functionality.

The HAANCGIP and HAANCGIT modules enable a CGI application program to send output in response
to the CGI request. This output is provided to the HTTP server in the same way as ‘standard’ CGI output
is processed. See the section Standard CGI Operation for more information about the processing of this
output.

The HAANCGIT interface module differs from the HAANCGIP interface module only in the way it
processes the parameters passed to it:

HAANCGIP accepts the data and length provided at face value and passes them directly to the HTTP
output processing module.

HAANCGIT assumes text output and strips all trailing, nonprintable characters from the end of the
provided data (as determined from the provided data and length) up to the first character which has a
value greater than blank.

61

Programming CGI RequestsSMARTS HTTP Server

HAANCGIT treats a carriage return (X’0D’) or a line feed (X’0A’) as valid data and as the last
character in the output data. This is useful where a standard area and length are to be used when outputting
text data as the program generating the output must include the CR or LF characters to format text
correctly. Using the HAANCGIP interface, anything following the CR or LF is also treated as data and
may cause output to ‘skew’.

The HAANCGIP/T interface modules must be invoked with the following parameter list:

HAANCGIP/T status data length

-where

status
is used to return the status of the request as documented in the section Interface Module
Status.

data is the data or the field containing the data to be output in response to the CGI request.

length

is a 2-byte binary value containing the length of the data area provided. For the HAANCGIP
interface, this is the exact length of the data to be sent. For the HAANCGIT interface, this is
the maximum length of the data area. As stated previously, HAANCGIT strips off all trailing
nonprintable characters in the data area.

CGI Extension Interface Module Status
The status parameter passed to the CGI extension interface modules is a four-byte contiguous area
comprising a two-byte return code followed by a two-byte reason code. Appropriate definitions are
provided in the language-specific sections; however, the return and reason codes are documented in this
section.

The language-related call to the interface modules must be successful before any return or reason codes
are entered. The call fails if the interface module

is not linked with the module produced by the language compiler; or

could not be loaded at run time if this facility is available to the language.

Interface Module Return Codes

The following codes may be returned by the CGI extension interface modules.

62

SMARTS HTTP ServerProgramming CGI Requests

Return
Code

The CGI extension interface request . . .

0 was processed successfully

4
was processed successfully but there is additional information related to the
calling of the function in the reason code field

8
failed due to some environmental error. The reason code indicates what
happened

12
was invalidated based on information the user provided or failed to provide. The reason
code indicates what happened.

16
failed due to an internal processing error. The reason code indicates what
happened.

Interface Module Reason Codes

Note:
This documentation is provided only for compatibility. All applications should use the HAANUPR
interface functions to achieve this functionality.

The following reason codes may be returned by the CGI extension interface modules. Each reason code
has an associated return code as documented in this table.

63

Programming CGI RequestsSMARTS HTTP Server

Reason
Code

Associated
Return
Code

Meaning

4 8 Request failed due to insufficient storage

8 12 Invalid length supplied to the interface function in a length field

12 4 Warning returned from the HTTP server output processing module

16 8 Error returned from the HTTP server output processing module

20 4
Variable length error The full length of a variable could not be returned due
because insufficient space was provided in parameters supplied by the user to
hold the value to be returned.

24 12 The format of the parameters provided was invalid

28 8 The variable name requested was not found in the CGI data

32 16
A logic error occurred due to the format of the content data provided with the
CGI request

36 8 Insufficient space to return data

40 12
The module is called from a program that is not running as a result of a HTTP
request and therefore does not have the data available to satisfy the request

44 4

End of data reached. This will be set for the HAANCGIL function when all
data has been returned. The application program should check the ‘entries’
field as the number of entries returned may be ‘0’ depending on the sequence
of HAANCGIL interface requests.

48 12
Invalid parameter list. One or more parameters for a given request have not
been provided or contain invalid data.

64

SMARTS HTTP ServerProgramming CGI Requests

Running CGI Programs under SMARTS
This chapter provides information about running application programs under SMARTS in the supported
environments.

This chapter covers the following topics:

The SMARTS Server Environment

The Com-plete Environment

Natural Considerations

C Considerations

COBOL Considerations

PL/1 Considerations

S/390 Assembler Considerations

The SMARTS Server Environment
Programs that comply with the HTTP server CGI requirements can use any of the mechanisms available
under the SMARTS server environment to access data.

It is currently possible to access ADABAS, DB2, and VSAM data from this environment.

Refer to the appropriate SMARTS documentation for more information about accessing data from this
environment.

This section provides information about running programs in the SMARTS server environment.

Linking the Program

An application program may only be run in the SMARTS server environment if it is available to the
SMARTS server address space. To make an application program available to the SMARTS server address
space, link the program into a dataset in the COMPLIB concatenation under MVS or MSP, or to one of
the libraries in the VSE search chain. Always link a reentrant module with the ‘RENT’ option.

Sample jobs HJBNCOBC and HJBNPL1C are provided on the HTPvrs.SRCE dataset to do this once an
object module has been created. Creation of the object modules is covered in the appropriate
language-specific section of this chapter.

Note:
Since high-level languages like Natural, COBOL, and PL/1 load the SMARTS-provided CGI extensions,
COBOL and PL/1 programs must be linked into a dataset in the COMPLIB concatenation whereas no
additional processing is required for Natural.

65

Running CGI Programs under SMARTSSMARTS HTTP Server

Requirement

All CGI programs must run RMODE=ANY.

The Com-plete Environment
Programs that comply with the HTTP server CGI requirements can use any of the mechanisms available
under Com-plete to access data.

It is currently possible to access ADABAS, DB2, and VSAM data from this environment.

Refer to the appropriate Com-plete documentation for more information about accessing data from this
environment.

This section provides information about running programs under Com-plete.

Linking the Program for Com-plete

An application program may only be run under Com-plete if it is available to the Com-plete address space.
To make an application program available to the Com-plete address space, link the program into a dataset
in the COMPLIB concatenation under MVS or MSP, or to one of the libraries in the VSE search chain.
Always link a reentrant module with the ‘RENT’ option.

Sample jobs HJBNCOBC and HJBNPL1C are provided on the HTPvrs.JOBS dataset to do this once an
object module has been created. Creation of the object modules is covered in the appropriate
language-specific section of this chapter.

Note:
Since high-level languages like Natural, COBOL, and PL/1 load the SMARTS-provided CGI extensions,
COBOL and PL/1 programs must be linked into a dataset in the COMPLIB concatenation whereas no
additional processing is required for Natural.

Preparing Com-plete for the Application

In general, the user must tell Com-plete about the load module before it will execute successfully in these
environments. This process is called ‘cataloging’ the program and is achieved using the Com-plete ULIB
utility. The ULIB utility is provided with the size of the thread below the line in which the program will
run. If this calculation is incorrect, the application program is unlikely to run correctly. This is discussed
in the next section. Other program-related options may be specified to the ULIB utility as well. Refer to
the Com-plete Utilities Manual for more information.

Calculating the Catalog Size under Com-plete

All applications running under Com-plete have two areas of storage available to them: thread storage
above and below the 16-megabyte line.

Storage above the line is the same for all threads and is available in its entirety to any program
running in a given thread, regardless of the catalog size specified to the ULIB utility for the program.

66

SMARTS HTTP ServerRunning CGI Programs under SMARTS

Storage below the line is limited and therefore more tightly controlled. The amount available to an
application is controlled by the storage specification set for the program using the ULIB utility.

Note:
The maximum size any given thread can handle is the thread size specified in the Com-plete
configuration parameters minus 4k. Thus 496K is the largest application program catalog size that a 500K
thread can handle.

The catalog size comprises all the storage the program allocates locally as follows:

The size of the program if it is loaded into the thread.

The program is loaded into the thread if it is not specified as a Com-plete RESIDENTPAGE
program.

Any working storage allocated by the program.

For languages such as C, C++, COBOL, and PL/1, a table is generally built that indicates the initial
values of storage to be allocated. Software AG recommends that you use the sample table provided for
batch in each case (only the language environment case if all programs are LE-enabled) and modify it to
reflect the storage requirements of the online programs that will run under Com-plete. The
language-related documentation or the language environment (LE) documentation tells you how to
calculate the storage requirement for any given program.

Any storage allocated from the thread by the system.

These storage estimates are found in the section Resourse Usage.

Storage for any other programs (not in the RESIDENTPAGE area) called by the main application
program and the storage they require from the thread area.

When calculating these values, add 5 to 10% for fragmentation of the storage in the thread area.

Catalog Size for CGI Programs under Com-plete

Because a program that runs as a CGI program is not the first program loaded into the thread, its ULIB
definitions are not used to build the thread.

Instead, the ULIB definitions for the PAENSTRT module are used. PAENSTRT must be cataloged large
enough to accommodate itself and the CGI programs that it calls.

The storage used by the HTTP server request processing module is documented in the section Resource
Usage , while the storage used by the CGI program may be calculated as documented in the previous
section.

Program Index Entries under Com-plete

To avoid repeating the same load process every time, Com-plete keeps an index of the most used program
names in core. This index maintains information about the program in the load library so that the process
of loading the program is quicker.

67

Running CGI Programs under SMARTSSMARTS HTTP Server

If the program is relinked, it is generally not found automatically because the index still has a record of the
older version of the program. The ULIB utility is used to inform Com-plete that the information about the
module must be refreshed.

Com-plete also remembers when a module was not found. If a module was not found and is subsequently
added to the load library, you must inform Com-plete that it now exists by refreshing the module in the
same way.

Running the Program under Com-plete

After you have logged on through the VTAM interface, you may run the program from the command line
of the USTACK screen. Alternately, you may invoke the program by issuing a CGI request for the
program to an HTTP server running in the Com-plete environment where the program is available.

Program Options or Functions to Avoid under Com-plete

Compilers offer a number of facilities and options to control the execution of a program. In general,
options or functions that impact the following areas should be avoided:

Abnormal termination recovery or diagnostics processing can impact the data in any subsequent
dump and render problem resolution even more difficult. Any dumps or diagnostics provided for
support purposes must be generated with these options turned off.

Use options that load the SMARTS extension modules dynamically at runtime. Otherwise, these
modules must be linked to the application program modules, which may cause problems with version
control and also makes the module larger. When the language’s runtime system loads these modules,
they are found in the RESIDENTPAGE area and shared among all application programs and
languages.

Use the SMARTS stdio functions to access sequential operating system files when required. Using
I/O functions to access this data will either fail or impact the integrity of the Com-plete system.

Recommendations for the Com-plete Environment

Refer to the Complete System Programmer’s Manual for information about using LE/370 with Com-plete.

Software AG recommends that you define the following programs as RESIDENTPAGE:

RESIDENTPAGE=CEEBINIT
RESIDENTPAGE=CEEEV005
RESIDENTPAGE=CEEPLPKA
RESIDENTPAGE=IGZCFCC
RESIDENTPAGE=IGZCLNK
RESIDENTPAGE=IGZCPAC
RESIDENTPAGE=IGZCPCO
RESIDENTPAGE=IGZCULE
RESIDENTPAGE=IGZCXFR
RESIDENTPAGE=IGZEINI
RESIDENTPAGE=IGZETRM
RESIDENTPAGE=IGZEVEX

68

SMARTS HTTP ServerRunning CGI Programs under SMARTS

Recommendations for Cobol Running under Com-plete

Software AG recommends that you use the following parameters:

STACK=(8K,8K,BELOW,KEEP),
STORAGE=(00,NONE,00,8K),

Software AG also recommends that you assemble and link CEEUOPT to the COBOL program.

Natural Considerations
Natural must be installed in the SMARTS server environment before SMARTS functions can be used.

Running Natural Applications

Natural applications that use SMARTS functions are run as normal applications; however, the SMARTS
environment must be active and, to run Natural CGI requests, the HTTP server must be active.

Natural and the SMARTS CGI Extensions

 To use the SMARTS CGI extensions with Natural

1. INPL it into an appropriate Natural environment.

2. include the local data area HNANCGRL in the HTPvrs Natural library (provided as part of the
SMARTS installation materials); and

The HNANCGRL LDA defines the status area and codes that may be returned to the various SMARTS
CGI extensions interface requests.

Once HNANCGRL has been included, the Natural program may simply issue calls as follows:

CALL ‘HAANUPR’ HTPCGI-status function parm1 parm2 < .. > parmn

The following calls may also be issued but are only included for compatibility with previous releases. The
HAANUPR interface module implements the recommended interface: the following interface requests
will not be enhanced:

CALL ‘HAANCGIG’ HTPCGI-status field value lengthCALL ‘HAANCGIL’ HTPCGI-status token entries name-length
 name1 value-length1 value1 type1
 name2 value-length2 value2 type2
 < .. >
 namen value-lengthn valuen typen
CALL ‘HAANCGIP’ HTPCGI-status data length
CALL ‘HAANCGIT’ HTPCGI-status data length

The parameters required by these interfaces are described in the section SMARTS CGI Extensions . The
Natural format required for the other parameters is as follows:

69

Running CGI Programs under SMARTSSMARTS HTTP Server

Name Natural Format Description

field A<length> Must be an alpha field ending in a blank character

variable A<length> Must be an alpha field ending in a blank character

value A<length> Must be an alpha field of length ‘length’

length I2 Must be a two-byte binary field containing a length

data no defined format The start of an area (normally alpha) of length ‘length’

Natural Script

Using SMARTS and the Natural ISPF macro facility, you have the option to generate dynamic HTML
using the Natural language. The process is known as macro expansion, where the text (or HTML in this
case) is generated. This can also consist of variable substitution, repeating blocks, conditionally generated
text, along with file I/Os.

The macro facility is an extension of the Natural language and comprises two types of statements:
processing statements and text lines. Both are identified by the macro character that is defined by the
Natural ISPF administrator.

Processing Statements

Processing statements are executed during the macro expansion. The statements must be preceded by the
macro character and followed by a blank. The full power of the Natural language is available for
processing statements.

Text Lines

Text lines are copied to the generated output of the macro. They can contain variables or text. A variable
must be preceded by the macro character in order to be interpreted during expansion.

Example

In the following example, the macro character is ^. Lines 0010, 0020, and 0040 are processing statements;
line 0030 is a text line. Note that the ^ character is in front of the #NAME text line variable without a
space between.

Example:

0010 ^ MOVE ‘DAVE’ TO #NAME
0020 ^ IF #NAME EQ ‘DAVE’ THEN
0030 ^#NAME
0040 ^ END-IF

When the example above is expanded, the generated output is as follows:

 DAVE

70

SMARTS HTTP ServerRunning CGI Programs under SMARTS

How It All Works with SMARTS

Although its use is not required, the Natural ISPF macro facility provides a way to simplify the
programming of dynamic HTML generation.

Using Natural CGI, you can execute Natural objects directly from the browser. Within the Natural object,
calls can be included to get variables from the HTML page the call was initiated from and also to put
output back to the browser.

To start, an object of type macro must be created. This object type is only available within Natural ISPF.
After the macro is created, Natural code can be added for dynamic generation. The macro objects reside in
Natural libraries. When using Natural CGI, all objects must reside in the NATCGI library. Once a Natural
ISPF macro is stowed, it can be executed outside of Natural ISPF. When a macro is executed within
Natural ISPF, the output is written to the workpool (a Natural ISPF facility). When a macro object is
executed in native Natural, the output is written to the editor source area.

To put it all together, the HTML and Natural code are added to the macro object. Once the object has been
tested, it is stowed. Within the macro is a call to the HNANCGIP program that uses a Natural routine to
read the editor source area and write the lines back to the browser.

Macro Object Example:

0010 ^ DEFINE DATA LOCAL
0020 ^ 01 #TITLE (A10)
0030 ^ END-DEFINE
0040 ^ ASSIGN #TITLE = ‘This is a Natural Script test’
0050 <HTML>
0060 <HEAD>
0070 <TITLE> ^#TITLE </TITLE>
0080 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
0090 <META NAME="AUTHOR" CONTENT="A.N. Other">
0100 <META NAME="FORMATTER" CONTENT="Microsoft FrontPage 2.0">
0110 <META NAME="GENERATOR" CONTENT="Mozilla/3.01Gold (WinNT; I) [Netscape]">
0120 </HEAD>
0130 <BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE" VLIINK="#551A8B"
0140 ALINK="#FF0000">
0150
0160 <P>

0170 <IMG ISMAP SRC="../images/BARMENU.gif"
0180 BORDER=0 HEIGHT=28 WIDTH=378></P>
0190
0200 <H2>This is a test </H2>
0210 </BODY>
0220 </HTML>
0230 ^ FETCH RETURN ‘HNANCGIP’

The only Natural lines in this example are on 0010, 0020, 0030, 0040, and 0230. These are all processing
statements. The rest of the lines are all text lines. Note that the variable #TITLE is preceded by the macro
character on line 0070. During the macro expansion, this variable is substituted with the actual value of
the variable.

The line 0230 is calling a Natural program called HNANCGIP. As mentioned earlier, the output is written
to the editor source area when macros are executed outside of Natural ISPF. HNANCGIP reads all lines in
the editor source area and puts them back to the browser. It is that easy to create dynamic HTML. When
you want to change the HTML, you can create new HTML using a tool such as FrontPage and then just
cut and paste it into the macro. Then insert the Natural code for dynamic generation, stow the object, and

71

Running CGI Programs under SMARTSSMARTS HTTP Server

test it.

After the macro is expanded, the output written to the editor source area looks like the following:

0010 <HTML>
0020 <HEAD>
0030 <TITLE> This is a Natural Script test </TITLE>
0040 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
0050 <META NAME="AUTHOR" CONTENT="A.N. Other">
0060 <META NAME="FORMATTER" CONTENT="Microsoft FrontPage 2.0">
0070 <META NAME="GENERATOR" CONTENT="Mozilla/3.01Gold (WinNT; I) [Netscape]">
0080 </HEAD>
0090 <BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE" VLIINK="#551A8B"
0100 ALINK="#FF0000">
0110
0120 <P>

0130 <IMG ISMAP SRC="../images/BARMENU.gif"
0140 BORDER=0 HEIGHT=28 WIDTH=378></P>
0150
0160 <H2>This is a test </H2>
0170 </BODY>
0180 </HTML>

Note that the actual value of #TITLE was substituted on line 0030. When the output is in the editor source
area, HNANCGIP reads all lines and puts them to the browser.

The output written to the browser looks like the following:

<HTML>
<HEAD>
<TITLE> This is a Natural Script test </TITLE>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="AUTHOR" CONTENT="A.N. Other">
<META NAME="FORMATTER" CONTENT="Microsoft FrontPage 2.0">
<META NAME="GENERATOR" CONTENT="Mozilla/3.01Gold (WinNT; I) [Netscape]">
</HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE" VLIINK="#551A8B"
 ALINK="#FF0000">

<P>

<IMG ISMAP SRC="../images/BARMENU.gif"
BORDER=0 HEIGHT=28 WIDTH=378></P>

<H2>This is a test </H2>
</BODY>
</HTML>

Additional Notes on Natural

The following additional hints and tips may prevent problems while using the SMARTS CGI extensions
with Natural:

1. Do not present the first element of a Natural data area structure as a parameter to these routines.
Natural will present each element of the structure as a single parameter rather than simply passing a
pointer to the structure. Allocate the entire area, redefine the field, and name the main variable as the
parameter to the function.

72

SMARTS HTTP ServerRunning CGI Programs under SMARTS

2. Certain functions can result in system ABENDs that terminate the Natural session. Normally, this
only happens when certain functions are used in an invalid fashion but are not trapped by Natural
abnormal termination routines.

C Considerations
The SMARTS Software Developer Kit (SDK) is required to support CGI programs based on C.

Compiling and Linking C Applications

C application programs must be linked using the standard process that would be used to compile a batch
program for the operating system where the program will run. The one difference is that the
APSvrs.SRCE dataset provided with the SMARTS SDK must be specified instead of the C header library
provided with the compiler or operating system.

As SMARTS SDK does not provide or support all of the 800 or so UNIX function interfaces available at
present, there may be occasions when it is possible to use the header files and implementation provided
with the operating system. Whether this works depends on the function and how closely it interacts with
the operating system. Software AG recommends that you first write and run a small program under
SMARTS SDK to determine if the functionality will cause a problem.

It is intended that SMARTS SDK will support most if not all of these interfaces in the future. If you need
support for a function interface that is not currently supported, contact your Software AG technical
support representative for information about when and how the function will be supported. Refer to the
SMARTS SDK Programmer’s Reference Manual for information about the functions that are currently
supported.

Supplied C Sample Programs and Jobs

The C samples for HTTP processing that are provided on the HTPvrs.SRCE dataset are described in the
following table.

Member This is a sample ...

HCANSAMP

C program to accept a simple CGI request and return some data to the user. When
compiled and linked, it may be used in conjunction with the source members
HHANCGET or HHANCPUT, which contain HTML and are provided on the
HTPvrs.SRCE dataset. Note: PJBSCC and associated link jobs may be used to compile
and link this sample if required.

HHANCGET

HTML page that drives the HCANSAMP C program using a form and the HTTP GET
method. It may be referenced using the following URL. Refer to the installation
verification procedure for information about interpreting this URL.
http://ip-addr:port/htpvrs/srce/hhancget.htm

HHANCPUT

HTML page that drives the HCANSAMP C program using a form and the HTTP
POST method. It may be referenced using the following URL. Refer to the installation
verification procedure for information about interpreting this URL.
http://ip-addr:port/htpvrs/srce/hhancput.htm

73

Running CGI Programs under SMARTSSMARTS HTTP Server

SMARTS and stdin, stdout, and stderr

The standard I/O files are all supported by SMARTS as follows:

File Standard Processing CGI Processing

stdin
stdin is empty and any attempt to access
it sets the end-of-file condition.

When the request was generated using the POST
method, stdin contains the content data for the CGI
request. When the GET method is used, stdin is
empty and returns end-of-file, if accessed.

stdout

Output to stdout is written to the ‘stdout’
DD/DLBL which is allocated either
explicitly in the SMARTS procedure or
by default as a spool file.

Output to stdout is taken as response data to the
CGI request and passed on to the requesting client.

stderr

Output to stderr is written to the ‘stderr’
DD/DLBL which is allocated either
explicitly in the SMARTS procedure or
by default as a spool file.

Same as for standard processing

C and the SMARTS CGI Extensions

The SMARTS CGI extensions were designed with non-C applications in mind It is not envisaged that C
application programs will use these extensions.

COBOL Considerations
COBOL programs must be compiled and linked as if for the batch environment on the operating system
where they will run. Once compiled and available to the SMARTS address space or partition, COBOL
programs may simply be run as documented earlier in this manual.

Sample Programs and Jobs

The following table describes the various HTTP server COBOL samples that are provided on the
HTPvrs.SRCE dataset.

Member This is a sample ...

HHANCOBT

HTML page that drives the HOANSAMP COBOL program using a form and the
HTTP GET method. It may be referenced using the following URL. Refer to the
installation verification procedure for more information about interpreting this URL.
http://your.ip.address:port/htpvrs/srce/hhancobt.htm

HJBNCOBC JCL member to compile and link the sample COBOL CGI program HOANSAMP.

HOANCONV

COBOL program that uses the conversational features of the HTTP server to enable it
to converse with a WWW browser over a series of HTML pages. It may be started
using the following URL. Refer to the installation verification procedure for more
information about interpreting this URL. http://ip-addr:port/cgi/hoanconv

HOANSAMP COBOL CGI program that is driven by the HHANCOBT HTML page.

74

SMARTS HTTP ServerRunning CGI Programs under SMARTS

COBOL and the SMARTS CGI Extensions

COBOL programs may use the SMARTS CGI extensions by issuing a call to the appropriate extension
module as follows:

call ‘HAANUPR’ using HTPCGI-STATUS, function, parm1, parm2, <..>, parmn.

The following calls may also be issued but are only included for compatibility with previous releases. The
HAANUPR interface module implements the recommended interface; the following interface requests
will not be enhanced:

call ‘HAANCGIG’ using HTPCGI-STATUS, field, length, value.
call ‘HAANCGIL’ using HTPCGI-status, token entries, name-length,
 name1, value-length1, value1, type1,
 name2, value-length2, value2, type2,
 <..>
 namen, value-lengthn, valuen, type2.
call ‘HAANCGIP’ using HTPCGI-STATUS, data, length.
call ‘HAANCGIT’ using HTPCGI-STATUS, data, length.

The parameters required by these interfaces are described in SMARTS CGI Extensions .

The HTPCGI-status must be defined as follows in COBOL:

01 HTPCGI-STATUS.
 03 HTPCGI-RETURN-CODE pic 9(4)COMP.
 03 HTPCGI-REASON-CODE pic 9(4)COMP.

The following describes the COBOL format required for the other parameters:

Name COBOL Format Description

field pic x(<length>) Must be an alpha field ending in a blank character

variable pic x(<length>) Must be an alpha field ending in a blank character

value pic x(<length>) Must be an alpha field of length ‘length’

length pic 9(4) COMP Must be a two-byte binary field containing a length

data no defined format The start of an area (normally alpha) of length ‘length’

PL/1 Considerations
PL/1 programs must be compiled and linked as if for the batch environment on the operating system
where they will be running. Once compiled and available to the SMARTS address space or partition, PL/1
programs may be run as documented earlier in this manual.

Sample Programs and Jobs

The following table describes the HTTP server PL/1 samples that are provided on the HTPvrs.SRCE
dataset.

75

Running CGI Programs under SMARTSSMARTS HTTP Server

Member This is a sample ...

HHANTPL1T

HTML page that drives the HPANSAMP PL/1 program using a form and the HTTP
GET method. It may be referenced using the following URL. Refer to the installation
verification procedure for more information about interpreting this URL.
http://ip-addr:port/htpvrs/srce/hhancget.htm

HJBNPLIC JCL to compile and link the sample PL/1 CGI program HPANSAMP.

HPANSAMP PL/1 CGI program that is driven by the HHANPL1T HTML page.

PL/1 and External Module Names

Because PL/1 cannot support external names longer than seven (7) characters, aliases are required for the
SMARTS extension interfaces. All future interface names will be at most seven (7) characters long.

Aliases are created by changing the first four (4) characters of any extension module name to PL1. Users
must create these aliases themselves if they wish to use the functionality.

The following table provides a cross reference between the extension program name as documented in the
SMARTS SDK Programmer’s Guide and what must be used by PL/1:

PAANATOE PL1ATOE

PAANETOA PL1ETOA

These external modules must also be declared to the PL/1 program as follows:

DCL PAANHLL EXTERNAL ENTRY OPTIONS(ASM INTER);
DCL PL1ATOE EXTERNAL ENTRY OPTIONS(ASM INTER);
DCL PL1ETOA EXTERNAL ENTRY OPTIONS(ASM INTER);
DCL HAANUPR EXTERNAL ENTRY OPTIONS(ASM INTER);

Finally, for PL/1 to load these program dynamically, the following statements must be included:

FETCH PAANHLL;
FETCH PL1ATOE;
FETCH PL1ETOA;
FETCH HAANUPR;

If these statements are not included, the PL/1 compiler expects them to be linked with the application
program, which is not recommended.

PL/1 and the SMARTS CGI Extensions

PL/1 programs may use the SMARTS CGI extensions by issuing a call to the appropriate extension
module as follows:

CALL ‘HAANUPR’ using HTPCGI-status, function, parm1, parm2, <..>, parmn.

The calls documented in the other sections have not be included here as no PL/1 applications have been
created with older versions of SMARTS.

76

SMARTS HTTP ServerRunning CGI Programs under SMARTS

The parameters required by this interface is described in the section SMARTS CGI Extensions .

The HTPCGI-status must be defined as follows in PL/1:

DCL 1 HTPCGI-STATUS,
 2 HTPCGI-RETURN-CODE FIXED BINARY(15),
 2 HTPCGI-REASON-CODE FIXED BINARY(15);

The following describes the PL/1 format required for the other parameters:

Name PL/1 Format Description

field CHAR(<length>) Must be an alpha field ending in a blank character

variable CHAR(<length>) Must be an alpha field ending in a blank character

value CHAR(<length>) Must be an alpha field of length ‘length’

length FIXED BINARY(15) Must be a two-byte binary field containing a length

data no defined format The start of an area (normally alpha) of length ‘length’

S/390 Assembler Considerations

Assembler and the SMARTS CGI Extensions

Software AG recommends that Assembler programs use the standard SMARTS API to handle CGI
requests.

77

Running CGI Programs under SMARTSSMARTS HTTP Server

Support and Maintenance
The SMARTS system nucleus is written entirely in IBM 390 Assembler and is therefore supported using
ZAPs as the quickest and easiest way to provide corrections to customers.

This chapter covers the following topics:

Reporting Problems

Problem Resolution

Applying Maintenance

Reporting Problems
Problems should be reported to your local technical support center. You will be asked to provide whatever
information is required to solve the problem. Generally, you should have the following available when
reporting a problem:

1. Version, revision, and SM level of the SMARTS HTTP server software where the problem occurred.

2. Type and level of operating system where SMARTS was running.

3. Version, revision, and SM level of other products associated with the problem (for example, Natural,
ADABAS).

4. Message numbers where applicable.

5. System log for a period of time before the event.

6. Sequence of actions used to cause the problem, if reproducible.

7. Name and offset of the module where the problem occurred. Where an ABEND occurs within a
SMARTS module, RC generally points to the start of the module where you will find a constant
identifying the module. Subtract the PSW address from the address in RC to provide the offset into
the module.

8. The register contents at the time of the ABEND.

With this information, it may be possible to identify a previous occurrence of the problem and a
correction. If this is not the case, the following additional information is required:

1. The Com-plete online dump or SMARTS address space dump, as appropriate.

2. Output from the job where the failure occurred.

3. Other information that support personnel feel is relevant.

78

SMARTS HTTP ServerSupport and Maintenance

Problem Resolution
A number of tools are available to diagnose HTTP server problems as follows.

Thread Dump Diagnosis under Com-plete

When an application program ABENDs within the SMARTS environment running under Com-plete, an
online dump is written to the SD file. This dump may be viewed immediately and online using the
UDUMP utility. Refer to the Com-plete Utilities Manual for more information.

The dumps may be printed using the batch utility TUDUMP. Refer to the Com-plete System
Programmer’s Manual for more information about TUDUMP.

HTTP Server Trace Facilities

When HTTP requests are not being processed successfully, it can be useful to trace incoming and
outgoing data. For incoming data, the HEADER trace will provide details of exactly how HTTP server has
interpreted a given request while DATA tracing will show the exact format of data as it is received at the
HTTP server side and what is actually sent back by the HTTP server request processing module (or the
CGI program) to the web browser. HTTP server tracing may be activated using the HTTP server TRACE
configuration parameter.

Applying Maintenance
ZAPs for problems in the SMARTS product are provided in the following format:

HTvrnnn

-where

HT identifies this as a ZAP for the SMARTS HTTP server

vr is the version and revision number of SMARTS to which the ZAP applies

nnn is a sequential number uniquely identifying the ZAP

When a ZAP is provided to correct a problem, Software AG recommends that you use the following
procedure:

1. Copy the load modules zapped by the fix to a temporary load library.

2. Apply the ZAP to the modules in the temporary load library using the AMASPZAP utility.

Note:
When a ZAP applies to an environment-specific module (that is, one beginning with the characters
HAeN or PAen where "e" is any character other than "A), it may be necessary to relink the module to
activate the change.

3. Run SMARTS, placing this temporary load library in front of the standard HTPvrs.LOAD dataset in
the COMPLIB concatenation.

79

Support and MaintenanceSMARTS HTTP Server

4. Ensure that the problem has been resolved. If this is not possible immediately, it may be advisable to
run in this way for a period of time until it is clear that

the ZAP has not caused any problems; and

the problem the ZAP is intended to fix has been corrected.

5. If the ZAP causes problems or does not clear the problem, the temporary load library may be deleted
or cleared.

6. When you have verified the correction, copy the zapped modules back into your HTPvrs.LOAD
dataset.

80

SMARTS HTTP ServerSupport and Maintenance

The HTTP Server User Exit
The single HTTP server user exit is given control at strategic points in the processing of each HTTP
request to enable an installation to control and manipulate the processing of HTTP requests.

This chapter covers the following topics:

Installation

General Interface

Exit Points

Installation
The HTTP server user exit must be a load module called HAANUXIT and must be available for loading
by the HTTP server.

It is loaded when the HTTP server is initialized and becomes part of the HTTP server nucleus. It must be
reentrant and may reside above the 16-megabyte line.

The member HAANUXIT on the HTPvrs.SRCE dataset is a sample user exit that implements each of the
user exit points currently taken but simply returns normally to the user exit point. Thus, the user exit as
delivered may be compiled and will not affect the normal operation of the HTTP server.

A message is issued during the server initialization process when the module is found and loaded. If this
message is not issued, the exit is not operational.

General Interface
The exit is called with the following registers:

Reg. Contents

0 No relevant data

1 Pointer to a parameter list as described in this section

2-12 No relevant data

13 Pointer to an 18F savearea, which may be used by the exit

14
Address to which the exit returns. The exit must return using the following instruction to insure
that the caller gets control back in the appropriate mode: BSM R0,R14

15 Pointer to the entry point of the module

81

The HTTP Server User ExitSMARTS HTTP Server

Exit Parameter List

On entry to the user exit, register 1 points to a parameter list that varies depending on the call.

The parameters passed to each exit point are documented in the appropriate section; however, the first
parameter is always a pointer to the UXIT control block, which contains information about the HTTP
server itself and the exit point for which the user exit has been called.

A DSECT to map this control block may be generated by the following statement in the Assembler
program:

MYUXIT HMANUXIT DSECT=YES

The parameter list may be addressed using the following statements assuming R1 contains what it
contained when the module was entered:

 L Rx,0(,R1) Rx -> UXIT control block
 USING UXIT,Rx Address UXIT area

The following table describes the field names and their contents, which are relevant for all exit points. The
UXIT control block may also contain data relevant only to specific exit calls. Any fields of additional
significance are documented in the description of the exit point itself.

Field Name Description

UXITFUNC Contains a function code indicating the exit point for which the exit has been called.

UXITSSNM

Names the HTTP server subsystem for which the exit is being called. Each HTTP
server has a subsystem name assigned when the server is started. This field allows the
exit to uniquely identify an HTTP server when more than one is running in the same
SMARTS address space or partition.

UXITUSER

A field available to the user. This will be NULL on entry to the exit the first time and
will be passed intact to the user for each subsequent call. This field is intended for use
as an anchor point for the exit where storage areas are maintained from call to call. In
particular, the exit must insure that any storage areas acquired during the exit processing
and returned to any given exit point are freed during the termination call.

The HAANUXIT source member on the HTPvrs.SRCE dataset shows how the UXIT parameter list may
be addressed and processed. It should be used as the basis for any exit written at an installation.

Entry/Exit Processing

The HTTP server has been written using a standard entry/exit mechanism to provide consistent standards
within the server and to centralize much of the common coding used during entry/exit processing.

Two macros are used:

HMANENT for entry processing; and

HMANEXIT for exit processing.

82

SMARTS HTTP ServerThe HTTP Server User Exit

HMANENT Macro for Entry Processing

The HMANENT macro takes a number of parameters; however, the important ones from the exit’s point
of view are the WRKL and WRKD parameters.

WRKL specifies the length of the savearea and work area that should be allocated for the exit.

WRKD specifies the name of the working storage DSECT that will be used to address the area.

When control is passed to the code following the HMANENT macro expansion, the following
registers are set:

Reg. Contents

0 As passed by the calling program (for HAANUXIT, contains no relevant data)

1
As passed by the calling program (for HAANUXIT, contains a pointer to the HAANUXIT
parameter list)

2-11 As passed by the calling program (for HAANUXIT, contains no relevant data)

12 Set up as the program base register

13

Pointer to a newly allocated savearea and work area allocated based on the length specified on
the WRKL parameter. The DSECT name provided on the WRKD parameter must have the
following format: WORK DSECT
WORKSAVE DS 18F
Exit work fields here
WORKL EQU *-WORK Note that the field names are not important in this case once they are
provided correctly on the HMANENT macro. The main point is that the area must start with an
18F savearea.

14
Address to which the exit returns. While the exit returns using the HMANEXIT macro, this
may be useful for determining the mode of the calling program. In the case of the HAANUXIT,
it is always called from programs running AMODE=31.

15 Pointer to the entry point of the module

HMANEXIT Macro for Exit Processing

The HMANEXIT macro returns control to the calling program, optionally returning values in registers 15,
0, and 1. For HAANUXIT, the only relevant register in this case is 15, which is used as a return code.

Note that the HMANEXIT macro must get control with registers 12 and 13 containing the same values as
were set up by the HMANENT macro.

SMARTS API

The SMARTS Software Developer Kit (SDK) is required to make the full SMARTS API available to the
user exit. These functions may be invoked as documented in the SMARTS SDK Programmer’s Guide.

83

The HTTP Server User ExitSMARTS HTTP Server

Exit Points
For each exit point, the following subsections will be documented:

Subsection Documents . . .

Purpose the purpose for which the exit point is intended.

Parameters
the parameters, if any, supplied at a given exit point in addition to the UXIT control
block.

Return Codes /
Return Values

the return codes that may be returned in register 15 and the processing that any
given return code causes. In all cases when register 15 contains an invalid return
code on return from the exit, processing continues as described for return code 0.

Initialization

Purpose

The initialization exit point is designed to provide an opportunity for the exit to initialize its own
environment prior to any subsequent calls.

Parameters

Parm Description

1 Pointer to the UXIT control block

Return Codes / Return Values

Return Description

0 Continue processing normally

Termination

Purpose

The termination entry point has been designed to provide the exit with a point at which it should clean up
after any given request.

Parameters

Parm Description

1 Pointer to the UXIT control block

84

SMARTS HTTP ServerThe HTTP Server User Exit

Return Codes / Return Values

Return Description

0 Continue processing normally

URL Processing

Purpose

The URL processing exit point is taken immediately before the URL as provided by the user is processed.
The installation can then

modify or replace the URL all together and cause the HTTP server to use a different URL to service
the request. This may be useful when URL names change and a cut-over period is required to handle
old and new requests.

reject access to the URL, which causes the HTTP server to return a ‘permission denied’ response to
the request.

Parameters

Parm Description

1 Pointer to the UXIT control block

2
Pointer to the URL. This is a null1-terminated field. If this area is modified as it stands, the
URL processed is the one returned in this area. If the pointer is replaced, this is not be used
unless an appropriate return code is set on return from the exit.

3
Pointer to a fullword containing the length of the URL excluding the null-termination byte at
the end. If the address in parameter 2 is replaced, this field must be updated to reflect the
length of the URL in the area to which parameter 2 now points.

Return Codes / Return Values

Return Description

0
Continue processing normally. The URL is located and returned as provided to the exit or as
modified in place by the exit.

4
The second parameter contains the address of a new storage location containing the URL to
be used. The fullword pointed to by the third parameter has been updated to reflect the length
of this new URL.

8 Access to the URL is denied. The request is rejected with a ‘permission denied’ response.

Output Processing

85

The HTTP Server User ExitSMARTS HTTP Server

Purpose

The output processing exit point that is taken one or more times as output is built to be sent in response to
the request. How often the exit is taken depends totally on what the URL represents and how large the
output object is.

This exit point may be used to

control translation of the output data if the basic facilities provided by the HTTP server are not
adequate. This exit can effectively replace the HTTP server translation processing and do the
translation itself.

insert data into the output data stream. This is useful for inserting HTTP headers for any given
request; however, users must be careful that the resulting output is still a valid HTTP request. The
HTTP server does not control what is being sent in this case and therefore the user is responsible for
ensuring that it is correct.

prevent certain data from being sent.

Parameters

Parm Description

1

Pointer to the UXIT control block Two additional flags are used in this control block as
follows: UXITMHHS => HTTP header sent.
UXITMCHS => Content-type header sent.
UXITMCON => Now sending HTTP content.

2

Pointer to output data. All data sent in response to a request is passed to this exit starting with
the HTTP protocol headers and finishing with the content for the request, if any. If the data
area pointed to by this pointer is modified in any way, the modified value is used for ‘normal’
processing. If this pointer is replaced, the data is only sent if an appropriate return code is
returned from the exit.

3
Pointer to a fullword containing the length of the data pointed to by parameter 2. This must be
modified if the length of data in the area pointed to by parameter 2 changes or the address is
changed to point to a new area.

4

Pointer to the content type being sent. This reflects the content type as the HTTP server
believes it to be. If the exit changes the content type in any way, it should be reflected here by
the exit. When a CGI or Natural CGI request is being processing, this contains the value ‘CGI’
or ‘NATCGI’ until the content type being sent by the CGI program is established by the
program itself sending a ‘CONTENT-TYPE’ header or a default header being sent by the
HTTP server itself.

Return Codes / Return Values

86

SMARTS HTTP ServerThe HTTP Server User Exit

Return Description

0

Continue processing normally. Normal processing means that the data in the area pointed to
by parameter 2 for a length based on the fullword pointed to by parameter 3 is sent in
response to the request. If headers are still being processed (that is, UXITMCNS is not on),
these are always translated from EBCDIC to ASCII. If content is being processed (that is,
UXITMCNS is on), the data is only translated from EBCDIC to ASCII if the
CONTENT-TYPE header is of the form TEXT/* (where ‘*’ is any value).

4 Do not translate the data. The data is sent exactly as is.

8 Do not send the data. The attempt to send the data is ignored.

12

Insert the data pointed to by a parameter 2 for a length specified by the fullword pointed to
by parameter 3. The data is translated based on the rules for return code 0. The next call to
the exit represents the same data as was presented on this call, thus enabling the exit to insert
HTTP headers and/or content data if desired.

16 Same as return code 12; however, no HTTP server translation is performed on the data.

Input Processing

Purpose

Called when input is being processed for an incoming HTTP request, the input processing exit point may
be used to

translate incoming content in a way different from the basic translation services provided by the
HTTP server.

track or report identified HTTP headers or requests identified by certain requests.

Parameters

Parm Description

1 Pointer to the UXIT control block

2 Pointer to the data relating to the header identified by parameter 4

3 Length of the data pointed to by parameter 2

4

Pointer to the name of the HTTP header in EBCDIC for which the data pointed to by
parameter 2 has been provided. Two ‘logical headers’ are defined for this interface (‘logical’
because they do not exist in the HTTP protocol specification and are used only to identify the
data): QUERY_STRING the parameter string on the URL
CONTENT the actual request content

5 Pointer to a fullword containing the length of the HTTP header pointed to by parameter 4.

6 Points to the CONTENT-TYPE for the request when it is identified.

7 Points to a fullword containing the length of the content type as pointed to by parameter 6.

87

The HTTP Server User ExitSMARTS HTTP Server

Return Codes / Return Values

Return Description

0
Continue processing normally. ‘Normal processing’ translates any HTTP header data from
ASCII to EBCDIC unless it contains encoded data. Content is translated if the incoming
content type is TEXT/* (where ‘*’ represents any value).

4 Do not translate: use the data exactly as is in the buffer.

Accept Processing

Purpose

The accept processing exit point is taken immediately after a client has connected to the HTTP server. It
may be used to control which IP addresses may connect with the HTTP server

Parameters

Parm Description

1 Pointer to the UXIT control block

2

Pointer to a fullword containing the address of the peer application which has connected to the
server. This is in the form of an Internet address as follows: H Address family: always ‘2’ to
indicate an Internet address
H Port number of the peer program
F IP address of the peer program This structure is set to nulls when the address of the peer
application cannot be established. Note: Where a proxy is in use, this is the IP address of the
proxy and not of the originating client.

Return Codes / Return Values

Return Description

0 Continue processing normally; that is, accept and process the request.

4 No current meaning.

8 Reject the request. The HTTP server immediately terminates the connection with the client.

88

SMARTS HTTP ServerThe HTTP Server User Exit

Messages and Codes
This chapter contains messages and codes issued by the HTTP server components of the SMARTS
system.

The explanation of the messages is organized as follows:

SMARTS HTTP ABEND Codes

HTTP Server Messages (APSHTP Prefix)

Message Format

SMARTS HTTP server messages have the following format:

APSHTPnnnn - message-id

—where

HTP identifies the HTTP subsystem as issuing the message.

nnnn is a sequential message number identifying the message within the subsystem.

message-id

identifies the SMARTS address space issuing the message. This value is determined from
the SMARTS server environment configuration parameter MESSAGE-ID. It may be a
single character in braces (e.g. (X)) or it may contain the installation ID as specified in
the SMARTS server environment configuration parameter INSTALLATION. Refer to
the SMARTS Installation and Operations Manual for more information.

Message Documentation

Messages are documented with the message identifier (excluding the constant ‘APS’ which is always
present) in the heading followed by the message text.

The message text appears something like the following:

This is a test &1 with three (&2) replacement parms ‘&3’

When displayed or written to the console, the message contains the text as displayed; however, the
placeholders identified by the ‘&n’ construct are replaced by data relevant to the message.

If the data to be displayed is X, y, and AB, the message appears as follows:

This is a test X with three (y) replacement parms ‘AB’

Each message includes the following subsections:

89

Messages and CodesSMARTS HTTP Server

Description explains why the message was issued.

Placeholders
describes what each of the placeholders (that is, the ‘&n’ values) contains. If the
message contains no placeholders, the expression ‘Not applicable’ is written.

Action
describes the actions to be taken when this message is issued. A number of actions may
be listed, if appropriate. If no action is required, the expression ‘Not applicable’ is
written.

Additional
References

describes any other additional source(s) of information that may further explain the
message. A number of references may be listed, if appropriate. If no additional
references are available, the expression ‘Not applicable’ is written.

SMARTS HTTP ABEND Codes

Overview of Messages

ABEND U2000 | ABEND U2001 | ABEND U2002 | ABEND U2003

ABEND
U2000

Insufficient Storage

Explanation ABEND U2000 occurs when insufficient storage is available to obtain a primary
control block within the SMARTS HTTP environment. It indicates a problem at a
point where it is not possible to issue a SMARTS HTTP error message.

Action Make sufficient storage available to the program running in the environment to enable
the request to be satisfied.

ABEND
U2001

Logic Error in SMARTS HTTP Nucleus

Explanation ABEND U2001 indicates an unexpected condition within the nucleus for which a
message could not be issued.

Action It could occur due to storage overwrites in the SMARTS HTTP environment or as a
result of earlier errors in the environment. If none of these appears to be the case,
report the problem to your local support center.

ABEND
U2002

Invalid SMARTS local storage stack area

Explanation On freeing the SMARTS HTTP server request’s local storage stack area, it was
found to be corrupt.

Action See below for storage corruption explanation.

90

SMARTS HTTP ServerMessages and Codes

ABEND
U2003

Storage Corrupted

Explanation While freeing storage within the SMARTS nucleus, a corruption failure was detected.

Action When storage is allocated, SMARTS puts a storage accounting prefix at the start of the
storage and an identical suffix at the end of the storage. If these do not match when the
storage is freed, this ABEND occurs.

A mismatch indicates that either

the user that allocated the storage requested "n" bytes but used more than "n"
bytes thus overwriting the storage accounting area at the end; or

a user of storage before the storage area being freed overwrote the prefix of the
storage area.

In any event, register 7 will point to the prefix accounting area of the storage. The
length of the storage is found at register 7 + 4 (if it hasn’t been corrupted) while the
storage area itself returned to the user can be found at register 7 + 8.

HTTP Server Messages (APSHTP Prefix)

Overview of Messages

HTP0001 | HTP0002 | HTP0003 | HTP0004 | HTP0005 | HTP0006 | HTP0007 | HTP0008 | HTP0009 |
HTP0010 | HTP0011 | HTP0012 | HTP0013 | HTP0014 | HTP0015 | HTP0016 | HTP0017 | HTP0018 |
HTP0020 | HTP0021 | HTP0022 | HTP0023 | HTP0024 | HTP0026 | HTP0027 | HTP0028 | HTP0030 |
HTP0031 | HTP0032 | HTP0033 | HTP0034 | HTP0035 | HTP0036 | HTP0037 | HTP0039 | HTP0040 |
HTP0041 | HTP0042 | HTP0043 | HTP0044 | HTP0047 | HTP0048 | HTP0054 | HTP0055 | HTP0056 |
HTP0057

HTP0001 HTTP server already active

Explanation An attempt was made to issue an INIT command to an HTTP server; however, the
HTTP server was already active.

Placeholder Not applicable

Action Not applicable

References Not applicable

HTP0002 Insufficient storage for $2 ($1 bytes)

Explanation An attempt by the HTTP server to acquire storage failed due to insufficient storage
either in a user program thread or in the SMARTS address space.

91

Messages and CodesSMARTS HTTP Server

Placeholders

$1

Number of bytes that the system tried to acquire. The number may be suffixed
with a ‘K’ or an ‘M’ to denote KBYTES or MBYTES, respectively. ‘0’
indicates that the HTTP server was not in a position to determine the amount of
storage that could not be acquired. This could occur if a request to an
underlying system failed due to a storage shortage without indicating how
much was required.

$2
A character string indicating what the storage was for and possibly a four-digit
code in braces indicating which control block this storage was for, if
applicable.

Action If the storage is thread-related, use the ULIB utility to increase the catalog size of
the HTTP server application program that suffered the error. Note that the thread
sizes in general may have to be increased in the SMARTS region depending on
how much thread space the application requires.

If the storage is outside of the thread, there is a shortage of storage in the
SMARTS region itself. Where possible, SMARTS will expand it storage areas so
it is likely that such an expansion request failed thus resulting in this message.
Check for other errors related to any attempted expansion for more details.

The following table identifies the storage areas by name, where they may be
located and what they are used for:

Storage name Location Description

Master control
block (HMCB)

Above
The main control block used by the HTTP
server; acquired from the SMARTS
environment general buffer pool.

Working storage Above
The generic term used for storage acquired on a
temporary basis. It will normally be allocated in
the HTTP server application program thread.

HTTP request
areas (HPRQ and
buffers)

Above

The main HTTP server request processing block
and associated buffers acquired by the HTTP
server request processing program HAANRQST
from the application program thread.

HTTP request
header (HPRH)

Above

The request header control block acquired per
request header found in any given HTTP
request. It is allocated from the HTTP server
request processing program (HAANRQST)
thread.

HTTP
environment
variable work
area

Above

Area allocated from the HTTP server request
program thread storage to issue ‘putenv’
requests to the SMARTS environment to build
environment variables for CGI requests.

92

SMARTS HTTP ServerMessages and Codes

HTP0003 Invalid parameter specified $1

Explanation An invalid parameter was specified on the HTTP server startup. This may have been
supplied on the SMARTS server environment SERVER configuration parameter or
operator command.

Placeholders
$1

The string presented as a parameter to the HTTP server, which was not
recognized.

Action Correct the SMARTS server environment configuration parameter SERVER to
start the HTTP server.

Reissue the SMARTS server environment operator command SERVER INIT with
a valid parameter value.

References SMARTS Installation and Operations Manual

HTP0004 Server initialization failed

Explanation An attempt to start an HTTP server failed. The reason for the failure is indicated in a
previously issued message.

Placeholders Not applicable

Action Correct the problem that caused the HTTP initialization failure as specified in the
preceding message.

References Not applicable

HTP0005 URL parameter data exceeds maximum ($1 Bytes)

Explanation A user issued an HTTP request with a parameter on the URL that exceeded the length
of the URL parameter area. The URL parameter is the data following the question
mark, which in turn follows the actual URL itself. The URL parameter buffer is
allocated based on the HTTP server configuration parameter URLPBUFL.

Placeholders
$1

The maximum URL parameter length of data in bytes that is acceptable to the
instance of the HTTP server on which the error occurred.

Action Determine if the request itself is valid and if so, increase the specification of the HTTP
server configuration parameter URLPBUFL accordingly.

References The chapter HTTP Server Use and Customization starting on page in this manual.

93

Messages and CodesSMARTS HTTP Server

HTP0006 Content length exceeds maximum ($1 Bytes)

Explanation A user issued an HTTP request with content that exceeded the length of the allocated
content area. The content of an HTTP request is the data that follows the last HTTP
header provided for a request. The content buffer is allocated based on the specification
of the HTTP server configuration parameter CONTBUFL.

Placeholders
$1

The maximum length of content data in bytes which is acceptable to the
instance of the HTTP server on which the error occurred.

Action Determine if the request itself is valid and, if so, increase the specification of the HTTP
server configuration parameter CONTBUFL accordingly.

References The chapter HTTP Server Use and Customization starting on page in this manual.

HTP0007 Content length required for request

Explanation Where content is provided for an HTTP request, a ‘CONTENT-LENGTH’ header must
be provided on the request to determine how much content to expect. This message is
issued when the last HTTP header is received that is followed by content data;
however, no content length header has been received.

Placeholders Not applicable

Action Determine which client is submitting the HTTP request and change it to either submit
no content data or to submit a content length header indicating how much content data
will follow.

References The HTTP V1/1 Protocol specification

HTP0008 Server is not active

Explanation An operator command has been issued to an HTTP server or an attempt has been made
to terminate an HTTP server that is not active.

Placeholders Not applicable

Action Not applicable

References Not applicable

94

SMARTS HTTP ServerMessages and Codes

HTP0009 Content length ‘$1’ invalid for request

Explanation Content data has been provided on a HTTP request. Content data has been detected and
a content length header has been provided; however, the content data provided was less
than or greater that the length specified in the content length header.

Placeholders
$1

The length of data expected based on the length provided in the content length
HTTP header.

Action Determine which client issued the HTTP request and correct its content length
processing.

References The HTTP V1/1 Protocol specification

HTP0010 URL ‘$1’ not found

Explanation A client requested that the URL indicated in placeholder $1 be returned; however, the
URL does not exists.

Placeholders $1 The URL as requested by the client program.

Action This generally occurs for a dataset or dataset and member request. The HTTP server
translates a URL of the form /a/b/c/ to a sequential dataset name of the form a.b.c , or a
URL of the form /x/y/z to a PDS member name of the form x.y(z). The sequential
dataset or PDS member as translated from the URL by the HTTP server was not found
on the system. This indicates that either it doesn’t exist or it has not been cataloged.

References Not applicable

HTP0011 Unable to load CGI program ‘$1’

Explanation A request was issued that resulted in the URL being interpreted as a CGI request for
the program identified by placeholder $1. This program was not available to the
SMARTS address space and therefore the CGI request could not be completed.

Placeholders
$1

Name of the program identified by the CGI request which could not be loaded
in the SMARTS region where the request was received.

Action Determine if the request was valid and if it was, make the program available in the
SMARTS region where the request should be processed.

References The chapter Running CGI Programs under SMARTS starting on page in this manual.

95

Messages and CodesSMARTS HTTP Server

HTP0012 Natural startup module ‘$1’ not found: ‘$2’ NATCGI request failed

Explanation A request was received by the HTTP server that resulted in an attempt to execute the
Natural CGI program identified by the $2 placeholder. It was not possible to process
this request as the Natural thread-resident portion identified by the $1 placeholder
could not be loaded in the SMARTS region where the request was received.

Placeholders
$1

Name of the thread-resident Natural portion that is identified on the HTTP
server configuration parameter NATTHRD.

$2
Name of the Natural program that the Natural CGI request was attempting to
execute.

Action Correct the specification of the HTTP configuration parameter NATTHRD to identify
the correct Natural thread portion; or make the Natural thread portion named available
to the SMARTS region where the request was received.

References The chapter Installing Natural CGI starting on page in this manual.

HTP0013 Module $1 loaded

Explanation The module identified by the $1 placeholder was loaded by the nucleus. This message
is issued in the following cases:

When more than one version of a module exists, it indicates which version of the
module was loaded.

For exits that may not normally be part of the nucleus, this indicates when an exit
has been loaded and is active in the system.

Placeholders $1 Name of the module that was loaded.

Action This is an informational message, no action is necessary.

References Not applicable

HTP0014 Server initialization in progress

Explanation The HTTP server has commenced its initialization processing.

Placeholders Not applicable

Action Not applicable

References Not applicable

96

SMARTS HTTP ServerMessages and Codes

HTP0015 Read error ‘$1’ processing URL ‘$2’

Explanation A URL identifying a sequential dataset or PDS member has been received. This dataset
or PDS member has been found; however, an error occurred while reading the data to
transmit it to the user.

Placeholders

$1

The error number returned by the SMARTS API function being used to read
the dataset or PDS member. Refer to the SMARTS SDK Programmer’s
Reference Manual for a cross reference of error numbers to C macro variable
names identifying the error that has occurred. The HTTP server uses the ‘gets’
and ‘read’ functions to access data, so refer to the descriptions of these
functions for details of the cause of the identified error number being returned.

$2 The URL as requested by the user.

Action Use the returned information to identify the problem and correct it.

References SMARTS SDK Programmer’s Guide SMARTS SDK Programmer’s Reference Manual

HTP0016 ‘putenv’ failed processing environment variables errno=$1

Explanation When a CGI request is identified, the HTTP server must make a number of specific
environment variables available to the CGI program. This is done by using the
SMARTS API ‘putenv’ function to set the environment variables before calling the
CGI program. This indicates that the function request failed and therefore one or more
environment variables will not be available to the CGI program called.

Placeholders
$1

The error number as returned by the ‘putenv’ function. Refer to the SMARTS
SDK Programmer’s Reference Manual for details of errors returned by the
‘putenv’ function.

Action Based on the information returned, determine why the ‘putenv’ function failed and
correct the problem. Normally, ‘putenv’ only fails when insufficient storage is
available in the thread where the CGI program runs. This is determined by the size at
which the HTTP server request processing module (default name HAANRQST) is
catalogued using the ULIB utility.

References SMARTS SDK Programmer’s Reference Manual

97

Messages and CodesSMARTS HTTP Server

HTP0017 $1 Sockets $2 request error errno=$3

Explanation The HTTP server uses the SMARTS API sockets functions to communicate with
clients. This message indicates that the request indicated by the $1 placeholder failed
with the error number indicated.

Placeholders $1 Name of the sockets function request that failed

$2 Error number

$3 Error number

Action Sockets errors generally occur when the peer program terminates the conversation, or a
transport error occurs on the network.

References SMARTS SDK Programmer’s Reference Manual

HTP0018 Access to URL ‘$1’ forbidden

Explanation A user attempted to access the URL identified by $1 but access to the resource was
denied. This occurs depending on the specification of the HTTP server configuration
parameter LOGON as follows:

When LOGON=REQUIRED is specified, or LOGON=ALLOWED is specified
and the user supplies authorization information (user ID and password) for the
request, this error indicates that access to the resource based on the provided
information was not granted.

When LOGON=DISALLOWED is specified and the ‘public’ user ID does not
have access to the requested resource, the user is not permitted to provide
authorization information so the request is refused.

Placeholders $1 The URL that the user attempted to access.

Action If the resource should be accessible to users of the HTTP server in question, grant the
necessary access rights. If not, determine why users are attempting to access the
resource in question.

References The information on Security.

98

SMARTS HTTP ServerMessages and Codes

HTP0020 Internal logic error in $1+x$2

Explanation Something unexpected has occurred in the HTTP server nucleus. Additional errors are
likely to follow any occurrence of this error message.

Placeholders $1 Name of the HTTP server nucleus program in which the error was detected.

$2 Hexadecimal offset in the program where the error was detected.

Action Report the error message and the steps taken to produce the error to your local support
center.

References Not applicable

HTP0021 Server is quiescing

Explanation The HTTP server is quiescing. In this state, current requests may continue to
completion; however, no new requests are allowed.

Placeholders Not applicable

Action This is an informational message: no action is necessary.

References Not applicable

HTP0022 SAF Logon for default userid $1 failed

Explanation The default user ID specified is not authorized.

Placeholders $1 Default user ID

Action Check that the default user ID specified in the HMANCONF macro by the parameter
HTTPUSER is valid.

References The information on Security

HTP0023 Invalid URL ‘$1’

Explanation The URL requested by a client is invalid.

Placeholders $1 The URL as requested by the client

Action Specify a URL that the HTTP Server can understand. Refer to the appropriate IETF
standards for information on what constitutes a valid URL.

References Not applicable

99

Messages and CodesSMARTS HTTP Server

HTP0024 Natural initialization failure, RC=$1

Explanation A request was received by the HTTP server that resulted in an attempt to execute a
Natural CGI program. The Natural thread-resident portion that is identified on the
HTTP server configuration parameter NATTRD was loaded, but an error occurred at
startup.

Placeholders
$1

The return code received from the Natural thread-resident
portion.

Action Determine from the Natural documentation why the return code is returned and correct
the error.

References Natural Installation and Operations Manual.

HTP0026 Conversation $1 no longer exists

Explanation When a conversation is started with a WWW browser, it is assigned an internal
identifier known only to the HTTP server and the browser with which it is conversing.
This error indicates that when the browser eventually sent data in response to a request,
the original conversation no longer existed. This could occur due to a timeout, a system
ABEND, or even a stored URL being sent minutes, hours, days, or even weeks after
the conversation was terminated normally by the user.

Placeholders $1 Name of the conversational cookie.

Action Restart the conversational application as appropriate.

References Not applicable

HTP0027 Input buffer space $1 bytes exhausted

Explanation This error occurs if pooled sessions are in use and the entire request from the user must
fit into the input buffer. The message is longer than the input buffer length specified in
the configuration for the HTTP server.

Placeholders $1 The length of the buffer used for receiving input data from the network.

Action Increase the specification of the HTTP server configuration parameter RECVBUFL.

References The chapter HTTP Server Use and Customization starting on page in this manual.

100

SMARTS HTTP ServerMessages and Codes

HTP0028 Server interface $1 request failed rc=$2

Explanation A call to the environment independent server interface failed.

Placeholders $1 The server function requested: initialization, termination, command

$2 Return code

Action One or more messages will be written to the console to indicate the nature of the error.
Correct these problems and restart the server.

References Not applicable

HTP0030 HTTP header ‘$1’ unrecognized

Explanation A header was detected in an HTTP request that was not recognized by the HTTP
server. The header is ignored and the request is processed normally, ignoring the
specified header.

Placeholders
$1

Name of the header found in the HTTP request that was not recognized by the
HTTP server.

Action Report this to your technical support representative. While this is not an error as such,
it is possible that the HTTP header should be recognized in a future release of the
HTTP server.

References Not applicable

HTP0031 Unsupported request data $1/x$2

Explanation In the unformatted portion of an HTTP request, the HTTP server expects data as
specified in the HTTP V1/1 protocol standard. If more information than normal is
provided, or if the HTTP server makes an error interpreting the request, this message is
issued. The request is processed normally; however, the data indicated in the message
placeholders is be taken into account in the processing of the request.

Placeholders
$1

The data provided on the request that the HTTP server ignored in character
format.

$2
The data provided on the request that the HTTP server ignored in hexadecimal
format.

Action Report this to your technical support representative. While this is not an error as such,
it is possible that the HTTP request data should be recognized in a future release of the
HTTP server.

References Not applicable

101

Messages and CodesSMARTS HTTP Server

HTP0032 Header ‘$1’ data ‘$2’ ignored

Explanation The HTTP server recognized the header identified by the $1 placeholder, however, it
had to ignore the data as identified by the $2 placeholder. This generally occurs due to
a shortage of working space in the HTTP server request processing areas. The request
is processed, however, the ignored header data, as shown in this message, is not taken
into account while processing the request.

Placeholders $1 Name of the HTTP header for which the data was ignored.

$2
The data (or at least the start of the data) that was ignored for the header
identified by $1.

Action Report this to your technical support representative. While this is not an error as such,
it indicates that certain values within the HTTP server request interpretation processing
may need to be reviewed.

References Not applicable

HTP0033 Environment interface $1 request failed rc=$2

Explanation A call to the environment dependent interface failed. Environmental components are
called for initialization, termination and for initialization of the listening task.

Placeholders
$1

The server function requested: ENVINIT, ENVTERM, or
LISTINIT

$2 Return code

Action Report the error to your local support center.

References Not applicable

102

SMARTS HTTP ServerMessages and Codes

HTP0034 $1 Invalid data $2/x$3 for program

Explanation One of the HTTP server thread processing programs HAANLIST or HAANRQST is
started by a mechanism apart from the internal processing of the HTTP server. These
programs expect specific parameters that can only be provided via the internal HTTP
server mechanisms.

Placeholders $1 Name of the program that was started with the invalid data.

$2 The invalid data provided to the program in character format.

$3 The invalid data provided to the program in hexadecimal format.

Action Determine who or what is attempting to start these programs in an incorrect way and
force them to stop.

References Not applicable

HTP0035 SMARTS API $1 Request failed rc=$2/errno=$3

Explanation An error occurred for a request made to the SMARTS environment.

Placeholders $1 Name of the request.

$2 Return code.

$3 Error number.

Action Refer to the SMARTS SDK Programmer’s Reference Manual to determine why the
errno was returned for the request and correct the error. Note that in many cases, these
"errors" may be normal due to general activity on the TCP/IP network, for example.

References SMARTS SDK Programmer’s Guide

HTP0036 Server waiting for $1 user(s) to terminate

Explanation The server cannot terminate correctly until all users have terminated. The message
indicates the number of users upon which the server is waiting.

Placeholders $1 The number of users still active.

Action Wait until all users have terminated and reissue the request to QUIESCE or
TERMINATE the server. The server may be forced; however, this is not recommended
due to the subsequent problems it can cause.

References Not applicable

103

Messages and CodesSMARTS HTTP Server

HTP0037 Operator command $1 issued successfully

Explanation The operator command identified in the message has been successfully issued to the
server.

Placeholders $1 Name of the operator command issued.

Action This is an informational message: no action is necessary.

References Not applicable

HTP0039 HTTP server $1 active on port $2

Explanation The HTTP listening task attached for the server indicated by the $1 placeholder has
been started successfully and is now listening for incoming HTTP requests on the
TCP/IP port identified by the $2 placeholder.

Placeholders
$1

Name of the HTTP server as specified on the SMARTS server environment
SERVER configuration parameter or operator command.

$2
The TCP/IP port number on which the HTTP server is listening. This is set
using the HTTP server configuration parameter PORT.

Action Not applicable

References The HTTP Server installation ionformation.

104

SMARTS HTTP ServerMessages and Codes

HTP0040 Module not found $1

Explanation The module identified by the $1 placeholder cannot be found. A request to the
operating system to load the module has failed. Modules to be loaded by the HTTP
server must be available either in

the COMPLIB DD concatenation or system LNKLST for OS/390 and MSP
systems; or

a library identified in the search path for VSE.

If this message is issued during the initialization process, initialization fails if the
module is required for the correct operation of the HTTP server. Otherwise,
initialization continues.

If this message is issued during the termination process, termination continues;
however, depending on the function of the module, the termination process may not
complete successfully.

Placeholders $1 Name of the module that could not be found

Action If the module should be available during initialization and/or termination processing,
determine why it cannot be found.

References Not applicable

105

Messages and CodesSMARTS HTTP Server

HTP0041 Module $1 load error rc=$2/$3

Explanation The module identified by the $1 placeholder could not be loaded due to an error during
LOAD processing. A request to the operating system to load the module failed for
some reason other than the fact that the module could not be found.

If this message is issued during the initialization process, initialization fails if the
module is required for the correct operation of the HTTP server. Otherwise,
initialization continues.

If this message is issued during the termination process, termination continues;
however, depending on the function of the module, the termination process may not
complete successfully.

Placeholders $1 Name of the module for which the LOAD request failed.

$2 Return code from the operating system LOAD request.

$3 Reason code from the operating system LOAD request.

Action Determine from the return and reason codes why the LOAD request failed and correct
the error.

References MVS/ESA Assembler Programmers Macro Reference Manual

VSE/ESA Assembler Programmers Macro Reference Manual

HTP0042 Module $1 issued return code $2

Explanation A number of modules are called internally during HTTP server initialization and
termination. These modules generally issue a 0 return code when they complete
successfully. This message is issued when a module is called and its return code is not
0. When a non-zero return code is issued, the module responsible issues a message
itself to indicate where the problem lies.

Initialization processing continues if the return code is less than 8 and terminates if the
return code is 8 or greater.

Termination processing continues; however, if the return code is 8 or greater, there
may be additional failures later in the termination process.

Placeholders $1 Name of the module that issued the return code

$2 Return code issued by the module identified by $1.

Action Refer to preceding messages in the log to determine why the return code was issued.
Correct the situation.

References Not applicable

106

SMARTS HTTP ServerMessages and Codes

HTP0043 Server $1 initialization successful

Explanation Initialization processing for the HTTP server identified by the $1 placeholder
completed successfully.

Placeholders
$1

Name of the HTTP server as specified on the SMARTS server environment
SERVER configuration parameter or operator command.

Action Not applicable

References Not applicable

HTP0044 Server $1 terminating on port $2

Explanation The HTTP server as identified in the $1 placeholder is no longer listening for incoming
HTTP requests on the port specified by placeholder $2. This generally indicates that an
error has occurred on the sockets ‘listen’ or ‘accept’ request, which in turn indicates
that the TCP/IP connection has problems.

Placeholders
$1

Name of the HTTP server as specified on the SMARTS server environment
SERVER configuration parameter or operator command.

$2 The TCP/IP port number on which the HTTP server was listening.

Action Not applicable

References SMARTS Installation and Operations Manual

HTP0047 Server $1 terminated

Explanation The HTTP server identified by the $1 placeholder terminated successfully.

Placeholders
$1

Name of the HTTP server as specified on the SMARTS server environment
SERVER configuration parameter or operator command.

Action Not applicable

References Not applicable

107

Messages and CodesSMARTS HTTP Server

HTP0048 Unrecognized operator command $1

Explanation An operator command was issued to the HTTP server using the SMARTS server
environment SERVER operator command; however, the operator command was not
processed because it was not recognized by the HTTP server.

Placeholders
$1

The operator command provided on the SMARTS server environment
SERVER operator command for the HTTP server that was not recognized by
the HTTP server.

Action Issue a valid operator command.

References The chapter HTTP Server Use and Customization starting on page in this manual.

HTP0054 Server $1 using $2 configuration

Explanation The HTTP server identified by the $1 placeholder is initializing with the HTTP server
configuration parameters specified by the $2 placeholder.

Placeholders
$1

Name of the HTTP server as specified on the SMARTS server environment
SERVER configuration parameter or operator command.

$2
Name of the HTTP server configuration parameter module that will be used by
this instance of the HTTP server for its configuration information.

Action Not applicable

References The chapter HTTP Server Use and Customization starting on page in this manual.

HTP0055 Invalid configuration file $1 data=$2/x$3

Explanation The HTTP server configuration file identified by the $1 placeholder starts with invalid
data and thus cannot be used by the HTTP server for its configuration processing. The
HTTP server initialization process terminates.

Placeholders $1 Name of the configuration file found to be invalid.

$2 The data found at the start of the invalid module in character format.

$3 The data found at the start of the invalid module in hexadecimal format.

Ensure that the module was generated using the procedures and samples provided
with SMARTS.

Ensure that another module of the same name is not higher in the COMPLIB
concatenation or VSE search path than the HTTP configuration module you wish
to use.

References The information on installation, as well as customization and use of the HTTP Server.

108

SMARTS HTTP ServerMessages and Codes

HTP0056 Server cannot initialize - SMARTS environment not active

Explanation The SMARTS environment must be active before the HTTP server can be activated.
During its initialization processing, the HTTP server determined that the SMARTS
environment was not active.

Placeholders Not applicable

Action If the HTTP server is being started with the SMARTS environment SERVER
configuration parameter, ensure that it appears before the HTTP SERVER
statement(s) in the SMARTS environment configuration file.

If the HTTP server is being started with the SMARTS environment SERVER
operator command, start the SMARTS environment first.

References SMARTS Installation and Operations Manual

HTP0057 Module ‘$1’ attach failed rc=$2

Explanation The HTTP server uses internal SMARTS server environment functions to start new
processes in the SMARTS region. An attempt to attach the program identified by the
$1 placeholder failed.

If this program is HAANLIST, no task was available to listen on the appropriate port
for a given instance of the HTTP server.

If the module name is HAANRQST (or an alternate name assigned by the user), that
particular request itself fails; however, the HTTP server remains active and listening

109

Messages and CodesSMARTS HTTP Server

Placeholders $1 Name of the program for which the attach request failed

$2 Return code from the SMARTS server environment request issued as follows:

4 Insufficient TIBs available in the system

8 Program to be attached was not found

12 Security error

16 Invalid program name to be attached

20 Insufficient space in the SMARTS server environment general buffer pool

RC Action

4

The number of TIBs available in the system is determined by the SMARTS
server environment configuration parameter TIBTAB. Review the parameter
setting based on the appropriate section in the SMARTS Installation and
Operations Manual.

8
The program cannot be found if the HTTP server configuration parameter
HTTPRQST specifies a program name that is not available to the SMARTS
system.

8,
16

Report these errors to your technical support representative.

20 Review the SMARTS server environment storage configuration parameters.
Action RC Action

4

The number of TIBs available in the system is determined by the SMARTS
server environment configuration parameter TIBTAB. Review the parameter
setting based on the appropriate section in the SMARTS Installation and
Operations Manual.

8
The program cannot be found if the HTTP server configuration parameter
HTTPRQST specifies a program name that is not available to the SMARTS
system.

8,
16

Report these errors to your technical support representative.

20 Review the SMARTS server environment storage configuration parameters.
References SMARTS Installation and Operations Manual

Com-plete System Programmer’s Manual

110

SMARTS HTTP ServerMessages and Codes

Sample Members
Note:
Refer to the installation verification procedure for more information about interpreting the URLs provided
in the following tables.

This document covers the following topics:

On the SMARTS Source Dataset

On the SMARTS HTTP JOBS Dataset

On the Natural Library HTPvrs

On the Natural INPL Update for SYSWEB

On the SMARTS Source Dataset
The following section lists the sample members on the source dataset and tells what they are used for.

111

Sample MembersSMARTS HTTP Server

Member Description

HAANCONF the HTTP server configuration member.

HAANDSNT source used to map the dataset name to content type for the HTTP server.

HAANTYPT
source used to map the member type to content type for the HTTP server. Can be
modified and reassembled to add, remove, or change entries in the table.

HAANUXIT user exit to alter the processing of requests by the HTTP server.

HCANSAMP

C program to accept a simple CGI request and return some data to the user. When
compiled and linked, it can be used in conjunction with the source members
HHANCGET or HHANCPUT on the HTPvrs.SRCE dataset, which contain HTML.
Note: The PJASCC and associated link jobs may be used to compile and link this
sample, if required.

HHANCGET
HTML page that drives the C program HCANSAMP using a form and the HTTP GET
method. The page may be referenced as:
http://ip-addr:port/htpvrs/srce/hhancget.htm

HHANCOBT
HTML page that drives the COBOL program HOANSAMP using a form and the
HTTP GET method. The page may be referenced as:
http://your.ip.address:port/htpvrs/srce/hhancobt.htm

HHANCPUT
HTML page that drives the C program HCANSAMP using a form and the HTTP
POST method. The page may be referenced as:
http://ip-addr:port/htpvrs/srce/hhancput.htm

HHANNATT
HTML page that drives the Natural program HNANSAMP using a form and the
HTTP GET method. The page may be referenced as:
http://ip-addr:port/htpvrs/srce/hhannatt.htm

HHANPL1T
HTML page that drives the PL/1 program HNANSAMP using a form and the HTTP
GET method. The page may be referenced as:
http://ip-addr:port/htpvrs/srce/hhancget.htm

HOANCONV
COBOL program that uses the HTTP server to converse with a web browser over a
series of HTML pages. The program is started using
http://ip-addr:port/cgi/hoanconv

HOANSAMP COBOL CGI program driven by the HTML page HHANCOBT.

HPANSAMP PL/1 CGI program driven by the HTML page HHANPL1T.

On the SMARTS HTTP JOBS Dataset
The following section lists the sample members on the jobs dataset and tells what they are used for.

112

SMARTS HTTP ServerSample Members

Member Description

HJBNACNF job to compile and link the HAANCONF configuration parameters.

HJBNCOBC job to compile and link the COBOL CGI program HOANSAMP.

HJBNDSNT job to compile and link the HAANDSNT configuration table.

HJBNPLIC job to compile and link the PL/1 CGI program HPANSAMP.

HJBNTYPT job to compile and link the HAANTYPT configuration table

HJBNUXIT job to compile and link the HAANUXIT user exit.

HJENLINK job to link the HTTP server extensions for the SMARTS server environment.

HJENPARM
the parameters used to start and run the HTTP servers under the SMARTS server
environment.

On the Natural Library HTPvrs

Member Description

HNANCGIP
Natural program used for Natural script, which builds an output HTML page in the
Natural source area and writes it out to a browser using the HTTP server extensions.

HNANPGDA Global data area (GDA) used by HNANCGIP.

HAANSAMP Natural CGI program that is launched by HTML page HHANNATT.

HNANSHEL Natural CGI interface shell program delivered in object format.

HNANCGRL
Local data area (LDA) containing definitions of the SMARTS API high-level
language interface return and reason codes.

HNANWTOP
Natural program that writes to the operator and is used to verify that
Natural CGI processing is operating correctly.

On the Natural INPL Update for SYSWEB

Member Description

NWWAPS Natural Web Interface extension program delivered in object format

W3APSENV Natural subroutine required by NWWAPS delivered in object format

D5*
27 Natural modules (subprogram/subroutine/copycode/parameter/text) delivered in
source format, which make up the Natural Web Interface demo application

113

Sample MembersSMARTS HTTP Server

	SMARTS HTTP Server
	
	
	General Information
	Installation and Configuration
	Reference and Maintenance

	Introduction to the HTTP Server
	The HTTP Server
	SMARTS Implementation of the Common Gateway Interface †CGI‡
	SMARTS CGI Input Processing
	Input Translation

	SMARTS CGI Output Processing
	Header Processing
	Nonparsed Header Output
	Parsed Header Output
	Providing No HTTP Headers
	Output Translation Processing

	SMARTS CGI Environment Variables
	SMARTS CGI Termination Processing

	SMARTS CGI Extensions
	Standard CGI Operation
	Non-C CGI Programs
	Extensions for Other Languages

	The Conversational CGI Program Concept
	The HTTP Server Solution
	Conversational CGI Application Structure

	General Installation Information
	Supported Operating Systems
	Supported Environments
	Installation Media
	Installation Overview

	Installation on OS/390 or MVS
	The Installation Tape
	Tape Contents
	Datasets
	Distributed Datasets
	Datasets Created during the Installation Process

	Creating the PC Files
	Step 1: Copy the installation files to disk
	Step 2: Execute each file

	Creating the Mainframe Datasets
	
	Step 1: Allocate the Datasets
	Step 2: Upload the Data
	Step 3: Create the SMARTS Datasets

	Running the Installation Jobs
	
	Step 1: Allocate and Initialize User PDS Datasets
	Step 2: Install the HTTP Server HLL Interface Modules
	Step 3: Install the Natural INPL File
	Step 4: Install the Natural INPL Update File
	Step 5: Customize the HTTP Server
	Step 6: Customize the SMARTS Environment

	Installing under the SMARTS Server Environment
	
	Step 1: Modify the SMARTS Server Start-up Procedure or Job
	Step 2: Modify the SMARTS Server Start-up Parameters

	Installing under Com-plete
	
	Step 1: Modify the Com-plete Start-up Procedure or Job
	Step 2: Modify the Com-plete Start-up Parameters
	Step 3: Catalog PAENSTRT
	Step 4: Install the LE in Com-plete
	Step 5: Verify the Installation
	Step 6: Restart Com-plete

	Where Next ?

	Installation on VSE/ESA
	The Installation Tape
	Tape Contents
	Datasets
	Distributed Datasets
	Libraries and Sublibraries Created during the Installation Process

	Running the Installation Jobs
	Step 1: Copy the HTTP Server Components to Disk
	Step 2: Install the Natural INPL File
	Step 3: Install the Natural INPL Update File
	Step 4: Customize the HTTP Server
	Step 5: Customize the SMARTS Environment

	Installing under the SMARTS Server Environment
	
	Step 1: Modify the SMARTS Server Start-up Job
	Step 2: Modify the SMARTS Server Start-up Parameters

	Installing under Com-plete
	
	Step 1: Modify the Com-plete Start-up Job
	Step 2: Modify the Com-plete Start-up Parameters
	Step 3: Catalog PAENSTRT
	Step 4: Install the LE in Com-plete
	Step 5: Verify the Installation
	Step 6: Restart Com-plete

	Where Next ?

	Verifying the Installation
	Verify Operation of the Servers
	Sample Programs
	Sample HTML Files

	Verify the SMARTS HTTP Server Installation
	Prepare the Sample Programs
	Start the HTTP Server

	Troubleshooting
	The HTTP Server Initialization Fails
	The SMARTS Environment Initializes, but the HTTP Server Initialization Fails
	All SMARTS Components Initialize, but Access Attempts Fail

	Customizing and Using the HTTP Server
	Initializing the HTTP Server
	Termination
	Operator Commands
	Configuration
	Sample HAANCONF Member
	Assembling the Configuration Member

	HTTP Server Parameters
	CGIPARM
	CONTBUFL
	CONV
	DEFACEE
	DFLTCONT
	DFLTURL
	HTTPUSER
	HTTPLIST
	HTTPHCD
	LOGON
	MSGCASE
	NATLIB
	NATPARM
	NATTHRD
	PORT
	RECVBUFL
	SEND
	SENDBUFL
	SERVNAME
	SERVPOOL
	TRACE
	TRACEDD
	URLPBUFL

	Content Processing
	Member Type Processing
	Dataset Name Processing
	CGI Request Output Processing

	Configurable Tables
	HAANEUTT
	HAANIPTT
	HAANIUTT
	HAANOPTT
	HAANTOTT

	Default URL Processing
	Resource Usage
	Global Storage
	HAANLIST Storage
	HAANRQST Storage
	Additional Storage Used for CGI Requests
	Com-plete Considerations

	Pooled Server Processing
	Advantages of Pooled Servers
	Considerations when Using Pooled Servers
	Natural Considerations

	Conversational Processing

	Installing NATURAL CGI
	Natural 2.2 Support
	Natural Tasks
	Relationship to the HTTP Server Configuration
	Invoking a Natural CGI Program
	Installation Verification
	Additional Notes
	Using the Natural Web Interface
	Required Tasks
	Invoking a Natural Web Interface Program
	Installation Verification
	Additional Notes

	Security
	The Default User
	HTTP Server Security Integration
	Logon Allowed (LOGON=ALLOWED)
	Logon Required (LOGON=REQUIRED)
	Logon Disallowed (LOGON=DISALLOWED)
	HTTP User ID and Password Encryption

	Natural Security Considerations
	Implementing SAF Security

	Programming CGI Requests
	HAANUPR: The HTTP Server User Program Request Module
	Standard Return and Reason Codes
	The CONVERSE Function
	CONVERSE Parameters
	CONVERSE Return and Reason Codes

	The DISABLE-CONVERSE Function
	DISABLE-CONVERSE Parameters
	DISABLE-CONVERSE Return and Reason Codes

	The ENABLE-CONVERSE Function
	ENABLE-CONVERSE Parameters
	ENABLE-CONVERSE Return and Reason Codes

	The GET-DATA Function
	GET-DATA Parameters
	GET-DATA Return and Reason Codes

	The LIST-DATA Function
	LIST-DATA Parameters
	LIST-DATA Return and Reason Codes

	The PUT-BINARY Function
	PUT-BINARY Parameters
	PUT-BINARY Return and Reason Codes

	The PUT-TEXT Function
	PUT-TEXT Parameters
	PUT-TEXT Return and Reason Codes

	HAANCGIG Interface Module
	HAANCGIL Interface Module
	HAANCGIP and HAANCGIT Interface Modules
	CGI Extension Interface Module Status
	Interface Module Return Codes
	Interface Module Reason Codes

	Running CGI Programs under SMARTS
	The SMARTS Server Environment
	Linking the Program
	Requirement

	The Com-plete Environment
	Linking the Program for Com-plete
	Preparing Com-plete for the Application
	Calculating the Catalog Size under Com-plete
	Catalog Size for CGI Programs under Com-plete
	Program Index Entries under Com-plete
	Running the Program under Com-plete
	Program Options or Functions to Avoid under Com-plete
	Recommendations for the Com-plete Environment
	Recommendations for Cobol Running under Com-plete

	Natural Considerations
	Running Natural Applications
	Natural and the SMARTS CGI Extensions
	Natural Script
	Processing Statements
	Text Lines
	Example
	How It All Works with SMARTS

	Additional Notes on Natural

	C Considerations
	Compiling and Linking C Applications
	Supplied C Sample Programs and Jobs
	SMARTS and stdin, stdout, and stderr
	C and the SMARTS CGI Extensions

	COBOL Considerations
	Sample Programs and Jobs
	COBOL and the SMARTS CGI Extensions

	PL/1 Considerations
	Sample Programs and Jobs
	PL/1 and External Module Names
	PL/1 and the SMARTS CGI Extensions

	S/390 Assembler Considerations
	Assembler and the SMARTS CGI Extensions

	Support and Maintenance
	Reporting Problems
	Problem Resolution
	Thread Dump Diagnosis under Com-plete
	HTTP Server Trace Facilities

	Applying Maintenance

	The HTTP Server User Exit
	Installation
	General Interface
	Exit Parameter List
	Entry/Exit Processing
	HMANENT Macro for Entry Processing
	HMANEXIT Macro for Exit Processing

	SMARTS API

	Exit Points
	Initialization
	Purpose
	Parameters
	Return Codes / Return Values

	Termination
	Purpose
	Parameters
	Return Codes / Return Values

	URL Processing
	Purpose
	Parameters
	Return Codes / Return Values

	Output Processing
	Purpose
	Parameters
	Return Codes / Return Values

	Input Processing
	Purpose
	Parameters
	Return Codes / Return Values

	Accept Processing
	Purpose
	Parameters
	Return Codes / Return Values

	Messages and Codes
	
	
	Message Format
	Message Documentation

	SMARTS HTTP ABEND Codes
	Overview of Messages

	HTTP Server Messages (APSHTP Prefix)
	Overview of Messages

	Sample Members
	On the SMARTS Source Dataset
	On the SMARTS HTTP JOBS Dataset
	On the Natural Library HTPvrs
	On the Natural INPL Update for SYSWEB

